meat_calssify_fresh_crop_fixed_epoch100_V_0_5
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5296
- Accuracy: 0.8291
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0932 | 1.0 | 10 | 1.0897 | 0.4241 |
1.0783 | 2.0 | 20 | 1.0809 | 0.4494 |
1.0601 | 3.0 | 30 | 1.0457 | 0.5253 |
1.0246 | 4.0 | 40 | 1.0220 | 0.5316 |
0.9789 | 5.0 | 50 | 0.9556 | 0.5759 |
0.9271 | 6.0 | 60 | 0.8963 | 0.6076 |
0.8912 | 7.0 | 70 | 0.8881 | 0.6266 |
0.8307 | 8.0 | 80 | 0.7793 | 0.6646 |
0.7731 | 9.0 | 90 | 0.8021 | 0.6392 |
0.7522 | 10.0 | 100 | 0.7848 | 0.6582 |
0.6969 | 11.0 | 110 | 0.7099 | 0.6899 |
0.6233 | 12.0 | 120 | 0.6720 | 0.7532 |
0.5671 | 13.0 | 130 | 0.6675 | 0.7215 |
0.5255 | 14.0 | 140 | 0.6834 | 0.7152 |
0.5494 | 15.0 | 150 | 0.6656 | 0.7405 |
0.5031 | 16.0 | 160 | 0.5975 | 0.7532 |
0.4578 | 17.0 | 170 | 0.6668 | 0.7342 |
0.4514 | 18.0 | 180 | 0.6415 | 0.7658 |
0.3764 | 19.0 | 190 | 0.6383 | 0.7152 |
0.373 | 20.0 | 200 | 0.5907 | 0.7658 |
0.4071 | 21.0 | 210 | 0.5909 | 0.7532 |
0.3669 | 22.0 | 220 | 0.6417 | 0.7595 |
0.3172 | 23.0 | 230 | 0.6713 | 0.7342 |
0.3585 | 24.0 | 240 | 0.6214 | 0.7532 |
0.3713 | 25.0 | 250 | 0.7105 | 0.7152 |
0.3773 | 26.0 | 260 | 0.5745 | 0.7785 |
0.3167 | 27.0 | 270 | 0.5214 | 0.8038 |
0.3192 | 28.0 | 280 | 0.6045 | 0.7532 |
0.2735 | 29.0 | 290 | 0.5424 | 0.7975 |
0.2327 | 30.0 | 300 | 0.5455 | 0.7911 |
0.2561 | 31.0 | 310 | 0.5763 | 0.7532 |
0.233 | 32.0 | 320 | 0.5876 | 0.7595 |
0.2188 | 33.0 | 330 | 0.4700 | 0.8101 |
0.2528 | 34.0 | 340 | 0.5753 | 0.7848 |
0.2115 | 35.0 | 350 | 0.4716 | 0.8165 |
0.2103 | 36.0 | 360 | 0.5390 | 0.7975 |
0.193 | 37.0 | 370 | 0.5002 | 0.8038 |
0.1899 | 38.0 | 380 | 0.6283 | 0.7722 |
0.2473 | 39.0 | 390 | 0.5941 | 0.7911 |
0.177 | 40.0 | 400 | 0.4720 | 0.8544 |
0.1926 | 41.0 | 410 | 0.5397 | 0.8038 |
0.1558 | 42.0 | 420 | 0.5941 | 0.7722 |
0.1821 | 43.0 | 430 | 0.4703 | 0.8038 |
0.1507 | 44.0 | 440 | 0.5470 | 0.8228 |
0.1871 | 45.0 | 450 | 0.4939 | 0.8038 |
0.2069 | 46.0 | 460 | 0.4735 | 0.8228 |
0.1558 | 47.0 | 470 | 0.4094 | 0.8418 |
0.1604 | 48.0 | 480 | 0.5314 | 0.8038 |
0.168 | 49.0 | 490 | 0.5669 | 0.7975 |
0.1274 | 50.0 | 500 | 0.5027 | 0.8291 |
0.157 | 51.0 | 510 | 0.5210 | 0.8165 |
0.1574 | 52.0 | 520 | 0.5325 | 0.8038 |
0.113 | 53.0 | 530 | 0.5049 | 0.8165 |
0.1184 | 54.0 | 540 | 0.5178 | 0.8228 |
0.0908 | 55.0 | 550 | 0.6050 | 0.8038 |
0.1298 | 56.0 | 560 | 0.5167 | 0.8291 |
0.129 | 57.0 | 570 | 0.6349 | 0.7848 |
0.1896 | 58.0 | 580 | 0.5775 | 0.8228 |
0.1204 | 59.0 | 590 | 0.5537 | 0.8101 |
0.1285 | 60.0 | 600 | 0.6127 | 0.7722 |
0.1187 | 61.0 | 610 | 0.5656 | 0.8038 |
0.1234 | 62.0 | 620 | 0.5230 | 0.8101 |
0.1172 | 63.0 | 630 | 0.5435 | 0.8165 |
0.0906 | 64.0 | 640 | 0.4562 | 0.8734 |
0.0917 | 65.0 | 650 | 0.4852 | 0.8101 |
0.1097 | 66.0 | 660 | 0.5314 | 0.8228 |
0.134 | 67.0 | 670 | 0.5456 | 0.8228 |
0.0823 | 68.0 | 680 | 0.4863 | 0.8354 |
0.0997 | 69.0 | 690 | 0.5733 | 0.8228 |
0.1118 | 70.0 | 700 | 0.5084 | 0.8291 |
0.1505 | 71.0 | 710 | 0.4201 | 0.8734 |
0.1071 | 72.0 | 720 | 0.5167 | 0.8165 |
0.1006 | 73.0 | 730 | 0.4861 | 0.8101 |
0.0904 | 74.0 | 740 | 0.4193 | 0.8608 |
0.0825 | 75.0 | 750 | 0.5001 | 0.8418 |
0.086 | 76.0 | 760 | 0.3372 | 0.8797 |
0.0727 | 77.0 | 770 | 0.4712 | 0.8544 |
0.0779 | 78.0 | 780 | 0.5063 | 0.8418 |
0.0858 | 79.0 | 790 | 0.5910 | 0.8354 |
0.104 | 80.0 | 800 | 0.4938 | 0.8544 |
0.085 | 81.0 | 810 | 0.6679 | 0.7785 |
0.0782 | 82.0 | 820 | 0.5140 | 0.8481 |
0.0729 | 83.0 | 830 | 0.4257 | 0.8354 |
0.0712 | 84.0 | 840 | 0.5314 | 0.8101 |
0.0663 | 85.0 | 850 | 0.5001 | 0.8291 |
0.0683 | 86.0 | 860 | 0.3963 | 0.8924 |
0.0854 | 87.0 | 870 | 0.5039 | 0.8481 |
0.077 | 88.0 | 880 | 0.4131 | 0.8608 |
0.0683 | 89.0 | 890 | 0.4037 | 0.8671 |
0.0598 | 90.0 | 900 | 0.3973 | 0.8797 |
0.0692 | 91.0 | 910 | 0.4297 | 0.8734 |
0.0808 | 92.0 | 920 | 0.5091 | 0.8481 |
0.0529 | 93.0 | 930 | 0.4877 | 0.8418 |
0.0597 | 94.0 | 940 | 0.5055 | 0.8418 |
0.0551 | 95.0 | 950 | 0.4669 | 0.8481 |
0.0548 | 96.0 | 960 | 0.4825 | 0.8608 |
0.0922 | 97.0 | 970 | 0.4931 | 0.8481 |
0.0665 | 98.0 | 980 | 0.4109 | 0.8734 |
0.0471 | 99.0 | 990 | 0.4905 | 0.8544 |
0.0479 | 100.0 | 1000 | 0.5296 | 0.8291 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for talli96123/meat_calssify_fresh_crop_fixed_epoch100_V_0_5
Base model
google/vit-base-patch16-224-in21k