meat_calssify_fresh_crop_fixed_epoch100_V_0_9
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5517
- Accuracy: 0.8038
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1101 | 1.0 | 10 | 1.1019 | 0.3038 |
1.087 | 2.0 | 20 | 1.0748 | 0.4557 |
1.0593 | 3.0 | 30 | 1.0543 | 0.5 |
1.0235 | 4.0 | 40 | 1.0289 | 0.4873 |
0.9755 | 5.0 | 50 | 1.0048 | 0.4873 |
0.9116 | 6.0 | 60 | 0.9857 | 0.5 |
0.9154 | 7.0 | 70 | 0.9614 | 0.4937 |
0.8318 | 8.0 | 80 | 0.9839 | 0.5506 |
0.795 | 9.0 | 90 | 0.9393 | 0.5570 |
0.7544 | 10.0 | 100 | 0.9061 | 0.5886 |
0.6596 | 11.0 | 110 | 0.8780 | 0.6392 |
0.6111 | 12.0 | 120 | 0.8170 | 0.6392 |
0.5791 | 13.0 | 130 | 0.8801 | 0.6329 |
0.5287 | 14.0 | 140 | 0.8099 | 0.6709 |
0.4966 | 15.0 | 150 | 0.7827 | 0.6582 |
0.4842 | 16.0 | 160 | 0.8007 | 0.6709 |
0.4059 | 17.0 | 170 | 0.7380 | 0.6582 |
0.3905 | 18.0 | 180 | 0.6695 | 0.7278 |
0.3681 | 19.0 | 190 | 0.7496 | 0.6899 |
0.3618 | 20.0 | 200 | 0.7554 | 0.7089 |
0.3446 | 21.0 | 210 | 0.7603 | 0.6962 |
0.3625 | 22.0 | 220 | 0.7402 | 0.6772 |
0.3356 | 23.0 | 230 | 0.7598 | 0.6582 |
0.2758 | 24.0 | 240 | 0.7952 | 0.6899 |
0.287 | 25.0 | 250 | 0.8296 | 0.6772 |
0.3334 | 26.0 | 260 | 0.9352 | 0.6456 |
0.2925 | 27.0 | 270 | 0.8240 | 0.6772 |
0.2732 | 28.0 | 280 | 0.7479 | 0.7278 |
0.2816 | 29.0 | 290 | 0.7068 | 0.7152 |
0.2349 | 30.0 | 300 | 0.6218 | 0.7658 |
0.2282 | 31.0 | 310 | 0.6681 | 0.7342 |
0.2297 | 32.0 | 320 | 0.9084 | 0.6709 |
0.2316 | 33.0 | 330 | 0.8716 | 0.6772 |
0.2182 | 34.0 | 340 | 0.7289 | 0.7342 |
0.2159 | 35.0 | 350 | 0.6567 | 0.7405 |
0.2329 | 36.0 | 360 | 0.6947 | 0.7468 |
0.155 | 37.0 | 370 | 0.6736 | 0.7532 |
0.1901 | 38.0 | 380 | 0.8000 | 0.7025 |
0.1767 | 39.0 | 390 | 0.7780 | 0.7342 |
0.1718 | 40.0 | 400 | 0.6616 | 0.7595 |
0.1558 | 41.0 | 410 | 0.7514 | 0.7025 |
0.1564 | 42.0 | 420 | 0.7801 | 0.7278 |
0.2172 | 43.0 | 430 | 0.7421 | 0.7342 |
0.1703 | 44.0 | 440 | 0.7043 | 0.7595 |
0.1475 | 45.0 | 450 | 0.6865 | 0.7658 |
0.1174 | 46.0 | 460 | 0.5958 | 0.7975 |
0.1586 | 47.0 | 470 | 0.6927 | 0.7785 |
0.1515 | 48.0 | 480 | 0.8407 | 0.7089 |
0.1593 | 49.0 | 490 | 0.6465 | 0.7658 |
0.1777 | 50.0 | 500 | 0.7899 | 0.7215 |
0.1205 | 51.0 | 510 | 0.5897 | 0.7722 |
0.1375 | 52.0 | 520 | 0.6837 | 0.7785 |
0.1564 | 53.0 | 530 | 0.7868 | 0.7152 |
0.1481 | 54.0 | 540 | 0.7252 | 0.7722 |
0.1073 | 55.0 | 550 | 0.6796 | 0.7658 |
0.1549 | 56.0 | 560 | 0.7610 | 0.7152 |
0.1351 | 57.0 | 570 | 0.7985 | 0.7342 |
0.1235 | 58.0 | 580 | 0.6534 | 0.7595 |
0.1306 | 59.0 | 590 | 0.7046 | 0.7975 |
0.1464 | 60.0 | 600 | 0.7280 | 0.7595 |
0.1724 | 61.0 | 610 | 0.7066 | 0.7848 |
0.115 | 62.0 | 620 | 0.7080 | 0.7532 |
0.0842 | 63.0 | 630 | 0.6463 | 0.7848 |
0.0883 | 64.0 | 640 | 0.8290 | 0.7342 |
0.0901 | 65.0 | 650 | 0.7097 | 0.7595 |
0.1174 | 66.0 | 660 | 0.6627 | 0.7658 |
0.1167 | 67.0 | 670 | 0.7519 | 0.7722 |
0.0795 | 68.0 | 680 | 0.6104 | 0.7975 |
0.0583 | 69.0 | 690 | 0.7621 | 0.7848 |
0.0973 | 70.0 | 700 | 0.7309 | 0.7658 |
0.0909 | 71.0 | 710 | 0.9068 | 0.7215 |
0.0931 | 72.0 | 720 | 0.7453 | 0.7658 |
0.1101 | 73.0 | 730 | 0.8395 | 0.7089 |
0.0867 | 74.0 | 740 | 0.6816 | 0.7722 |
0.1154 | 75.0 | 750 | 0.7723 | 0.7405 |
0.1016 | 76.0 | 760 | 0.7334 | 0.7785 |
0.0821 | 77.0 | 770 | 0.7354 | 0.7722 |
0.0624 | 78.0 | 780 | 0.5303 | 0.8544 |
0.0698 | 79.0 | 790 | 0.7409 | 0.7658 |
0.086 | 80.0 | 800 | 0.6524 | 0.8038 |
0.072 | 81.0 | 810 | 0.7530 | 0.7848 |
0.0656 | 82.0 | 820 | 0.7409 | 0.7785 |
0.0909 | 83.0 | 830 | 0.7190 | 0.7848 |
0.0821 | 84.0 | 840 | 0.7085 | 0.7848 |
0.0618 | 85.0 | 850 | 0.6801 | 0.7658 |
0.0943 | 86.0 | 860 | 0.6859 | 0.7595 |
0.0787 | 87.0 | 870 | 0.6259 | 0.7975 |
0.0691 | 88.0 | 880 | 0.7148 | 0.7911 |
0.0494 | 89.0 | 890 | 0.7675 | 0.7785 |
0.0767 | 90.0 | 900 | 0.7293 | 0.7911 |
0.0861 | 91.0 | 910 | 0.6653 | 0.7975 |
0.0535 | 92.0 | 920 | 0.6421 | 0.8038 |
0.0574 | 93.0 | 930 | 0.7444 | 0.7911 |
0.0567 | 94.0 | 940 | 0.4409 | 0.8671 |
0.0759 | 95.0 | 950 | 0.5884 | 0.7975 |
0.0407 | 96.0 | 960 | 0.6606 | 0.7848 |
0.0624 | 97.0 | 970 | 0.5409 | 0.8354 |
0.0586 | 98.0 | 980 | 0.5585 | 0.7975 |
0.0413 | 99.0 | 990 | 0.6347 | 0.7911 |
0.0597 | 100.0 | 1000 | 0.5517 | 0.8038 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for talli96123/meat_calssify_fresh_crop_fixed_epoch100_V_0_9
Base model
google/vit-base-patch16-224-in21k