meat_calssify_fresh_crop_fixed_epoch_80_V_0_1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5098
  • Accuracy: 0.8462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1019 1.0 10 1.0993 0.3718
1.0872 2.0 20 1.0762 0.4167
1.0617 3.0 30 1.0498 0.4808
1.0264 4.0 40 1.0153 0.4872
0.9738 5.0 50 0.9431 0.5641
0.9038 6.0 60 0.9137 0.5449
0.8405 7.0 70 0.8209 0.6538
0.8131 8.0 80 0.8620 0.5897
0.7412 9.0 90 0.7370 0.6859
0.7006 10.0 100 0.7230 0.6987
0.6531 11.0 110 0.7679 0.6923
0.6215 12.0 120 0.6398 0.7308
0.5351 13.0 130 0.7016 0.7051
0.4847 14.0 140 0.5606 0.7949
0.4677 15.0 150 0.8849 0.6410
0.6042 16.0 160 0.5766 0.7756
0.4113 17.0 170 0.5573 0.7885
0.3662 18.0 180 0.6451 0.7179
0.3899 19.0 190 0.5613 0.7692
0.3518 20.0 200 0.6618 0.7051
0.303 21.0 210 0.5417 0.7756
0.2568 22.0 220 0.4785 0.8205
0.3098 23.0 230 0.6330 0.7564
0.3299 24.0 240 0.4944 0.8077
0.2373 25.0 250 0.5141 0.8141
0.2556 26.0 260 0.5719 0.8013
0.2387 27.0 270 0.5495 0.8013
0.2651 28.0 280 0.7409 0.7436
0.2909 29.0 290 0.6281 0.7821
0.2369 30.0 300 0.5067 0.8333
0.2084 31.0 310 0.5297 0.8077
0.2506 32.0 320 0.6124 0.7756
0.2395 33.0 330 0.5564 0.7692
0.2243 34.0 340 0.5176 0.7692
0.1951 35.0 350 0.5289 0.7949
0.1967 36.0 360 0.4829 0.8333
0.1602 37.0 370 0.5496 0.8205
0.1647 38.0 380 0.5969 0.7692
0.1772 39.0 390 0.6299 0.7949
0.1595 40.0 400 0.6386 0.7756
0.1801 41.0 410 0.5485 0.7885
0.1577 42.0 420 0.6692 0.7692
0.1683 43.0 430 0.5639 0.8077
0.1677 44.0 440 0.4369 0.8462
0.1367 45.0 450 0.5955 0.7756
0.1061 46.0 460 0.6644 0.8013
0.0957 47.0 470 0.5834 0.8077
0.1341 48.0 480 0.5541 0.8077
0.1153 49.0 490 0.6226 0.7885
0.122 50.0 500 0.5326 0.8269
0.1237 51.0 510 0.4428 0.8462
0.1006 52.0 520 0.5562 0.8269
0.1256 53.0 530 0.5066 0.8333
0.0995 54.0 540 0.6685 0.8013
0.1033 55.0 550 0.5183 0.8269
0.1177 56.0 560 0.6426 0.7692
0.1033 57.0 570 0.5079 0.8141
0.1389 58.0 580 0.5120 0.8205
0.0955 59.0 590 0.5381 0.8333
0.1108 60.0 600 0.5210 0.8526
0.1355 61.0 610 0.5460 0.8205
0.0897 62.0 620 0.4909 0.8269
0.084 63.0 630 0.5438 0.8205
0.082 64.0 640 0.5693 0.8269
0.1026 65.0 650 0.4864 0.8590
0.0872 66.0 660 0.4856 0.8397
0.0966 67.0 670 0.4073 0.8590
0.097 68.0 680 0.5848 0.8269
0.1007 69.0 690 0.4663 0.8205
0.0695 70.0 700 0.5000 0.8333
0.1048 71.0 710 0.6038 0.8141
0.0715 72.0 720 0.6008 0.8269
0.1061 73.0 730 0.5291 0.8269
0.0688 74.0 740 0.4124 0.8654
0.0638 75.0 750 0.5575 0.8205
0.0785 76.0 760 0.5537 0.8141
0.0758 77.0 770 0.4363 0.8718
0.0865 78.0 780 0.5200 0.8269
0.0844 79.0 790 0.6848 0.7949
0.0776 80.0 800 0.5098 0.8462

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
193
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for talli96123/meat_calssify_fresh_crop_fixed_epoch_80_V_0_1

Finetuned
(1858)
this model

Evaluation results