meat_calssify_fresh_crop_fixed_overlap_V_0_1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5094
  • Accuracy: 0.9198

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0396 1.0 1293 0.9865 0.5123
1.1023 2.0 2586 1.0537 0.5525
1.1657 3.0 3879 1.4125 0.6080
1.1606 4.0 5172 1.0966 0.4568
1.233 5.0 6465 1.0640 0.6481
1.1345 6.0 7758 1.2839 0.6451
1.1208 7.0 9051 1.4499 0.6451
1.0212 8.0 10344 1.1759 0.7068
0.891 9.0 11637 1.0590 0.7130
0.8541 10.0 12930 1.0337 0.7253
0.7985 11.0 14223 0.8852 0.7778
0.7569 12.0 15516 0.9469 0.7778
0.6847 13.0 16809 1.1415 0.7407
0.6794 14.0 18102 0.8935 0.8210
0.6455 15.0 19395 0.9556 0.7809
0.5708 16.0 20688 1.0258 0.8056
0.4988 17.0 21981 1.4170 0.7654
0.477 18.0 23274 0.9100 0.8179
0.4559 19.0 24567 1.0474 0.7994
0.4284 20.0 25860 0.8757 0.8488
0.3892 21.0 27153 0.9961 0.8241
0.419 22.0 28446 0.9303 0.8333
0.3244 23.0 29739 1.0301 0.8179
0.4107 24.0 31032 0.7903 0.8488
0.3853 25.0 32325 0.5818 0.9012
0.294 26.0 33618 0.9773 0.8426
0.2826 27.0 34911 0.7444 0.8735
0.2218 28.0 36204 1.0961 0.8426
0.3422 29.0 37497 0.9692 0.8395
0.2809 30.0 38790 0.8668 0.8673
0.2618 31.0 40083 0.7958 0.8704
0.2702 32.0 41376 0.6700 0.8796
0.253 33.0 42669 1.1036 0.8148
0.2161 34.0 43962 0.5197 0.9198
0.1727 35.0 45255 0.6996 0.8981
0.2117 36.0 46548 1.3509 0.8056
0.1967 37.0 47841 0.5835 0.9105
0.1885 38.0 49134 0.7260 0.8673
0.1445 39.0 50427 0.7016 0.8735
0.1216 40.0 51720 0.7880 0.8858
0.1552 41.0 53013 0.7237 0.8765
0.0992 42.0 54306 0.7155 0.9043
0.1047 43.0 55599 0.5785 0.9167
0.1119 44.0 56892 0.4751 0.9228
0.128 45.0 58185 0.6190 0.9043
0.1066 46.0 59478 0.6420 0.9167
0.1453 47.0 60771 0.5683 0.9198
0.0991 48.0 62064 0.6286 0.9074
0.0688 49.0 63357 0.5495 0.9228
0.0907 50.0 64650 0.5094 0.9198

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for talli96123/meat_calssify_fresh_crop_fixed_overlap_V_0_1

Finetuned
(2008)
this model

Evaluation results