meat_calssify_fresh_crop_fixed_overlap_epoch100_V_0_2
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2175
- Accuracy: 0.9283
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1008 | 1.0 | 11 | 1.0912 | 0.3583 |
1.0751 | 2.0 | 22 | 1.0569 | 0.5140 |
1.0562 | 3.0 | 33 | 1.0284 | 0.4891 |
0.9901 | 4.0 | 44 | 0.9771 | 0.5607 |
0.9179 | 5.0 | 55 | 0.9142 | 0.5888 |
0.8217 | 6.0 | 66 | 0.8546 | 0.6262 |
0.7811 | 7.0 | 77 | 0.7960 | 0.6791 |
0.8756 | 8.0 | 88 | 0.7693 | 0.6760 |
0.8095 | 9.0 | 99 | 0.7796 | 0.6636 |
0.6492 | 10.0 | 110 | 0.7908 | 0.6760 |
0.6357 | 11.0 | 121 | 0.7367 | 0.6885 |
0.6184 | 12.0 | 132 | 0.7575 | 0.6542 |
0.5371 | 13.0 | 143 | 0.5625 | 0.8069 |
0.5586 | 14.0 | 154 | 0.5400 | 0.7819 |
0.4235 | 15.0 | 165 | 0.5775 | 0.7664 |
0.5082 | 16.0 | 176 | 0.5360 | 0.7819 |
0.3758 | 17.0 | 187 | 0.5193 | 0.8131 |
0.3729 | 18.0 | 198 | 0.6018 | 0.7695 |
0.5911 | 19.0 | 209 | 0.4724 | 0.8224 |
0.3055 | 20.0 | 220 | 0.4877 | 0.8162 |
0.3054 | 21.0 | 231 | 0.5504 | 0.7726 |
0.2947 | 22.0 | 242 | 0.5059 | 0.8069 |
0.2336 | 23.0 | 253 | 0.4085 | 0.8598 |
0.2806 | 24.0 | 264 | 0.5123 | 0.8193 |
0.2782 | 25.0 | 275 | 0.4825 | 0.8131 |
0.2396 | 26.0 | 286 | 0.3329 | 0.8910 |
0.1937 | 27.0 | 297 | 0.3984 | 0.8816 |
0.5237 | 28.0 | 308 | 0.5059 | 0.8224 |
0.1951 | 29.0 | 319 | 0.6188 | 0.7757 |
0.2097 | 30.0 | 330 | 0.3235 | 0.8754 |
0.1443 | 31.0 | 341 | 0.4216 | 0.8567 |
0.1856 | 32.0 | 352 | 0.3461 | 0.8785 |
0.1837 | 33.0 | 363 | 0.3602 | 0.8723 |
0.2783 | 34.0 | 374 | 0.3804 | 0.8660 |
0.1553 | 35.0 | 385 | 0.3125 | 0.8879 |
0.1413 | 36.0 | 396 | 0.3002 | 0.8972 |
0.1582 | 37.0 | 407 | 0.3564 | 0.8723 |
0.1573 | 38.0 | 418 | 0.4468 | 0.8380 |
0.188 | 39.0 | 429 | 0.4019 | 0.8505 |
0.1562 | 40.0 | 440 | 0.2482 | 0.9221 |
0.1295 | 41.0 | 451 | 0.4421 | 0.8349 |
0.1472 | 42.0 | 462 | 0.3083 | 0.8972 |
0.12 | 43.0 | 473 | 0.2961 | 0.9003 |
0.1056 | 44.0 | 484 | 0.3540 | 0.8692 |
0.1121 | 45.0 | 495 | 0.3734 | 0.8692 |
0.1055 | 46.0 | 506 | 0.3385 | 0.8785 |
0.2452 | 47.0 | 517 | 0.3638 | 0.8629 |
0.1398 | 48.0 | 528 | 0.3100 | 0.8941 |
0.1255 | 49.0 | 539 | 0.2797 | 0.9034 |
0.0972 | 50.0 | 550 | 0.2636 | 0.9034 |
0.1057 | 51.0 | 561 | 0.2505 | 0.9003 |
0.0929 | 52.0 | 572 | 0.3668 | 0.8816 |
0.0991 | 53.0 | 583 | 0.2946 | 0.8972 |
0.0994 | 54.0 | 594 | 0.2765 | 0.9065 |
0.0949 | 55.0 | 605 | 0.2876 | 0.9097 |
0.2796 | 56.0 | 616 | 0.2407 | 0.9221 |
0.071 | 57.0 | 627 | 0.3321 | 0.8941 |
0.1163 | 58.0 | 638 | 0.2527 | 0.9315 |
0.0966 | 59.0 | 649 | 0.2549 | 0.9252 |
0.0871 | 60.0 | 660 | 0.3171 | 0.8879 |
0.216 | 61.0 | 671 | 0.2085 | 0.9283 |
0.0556 | 62.0 | 682 | 0.2115 | 0.9190 |
0.0842 | 63.0 | 693 | 0.2602 | 0.9097 |
0.0824 | 64.0 | 704 | 0.3565 | 0.8723 |
0.0765 | 65.0 | 715 | 0.2983 | 0.9003 |
0.3268 | 66.0 | 726 | 0.2924 | 0.8972 |
0.0881 | 67.0 | 737 | 0.2990 | 0.8941 |
0.0656 | 68.0 | 748 | 0.2518 | 0.9128 |
0.0707 | 69.0 | 759 | 0.2702 | 0.9003 |
0.0609 | 70.0 | 770 | 0.2493 | 0.9190 |
0.0882 | 71.0 | 781 | 0.2210 | 0.9252 |
0.0706 | 72.0 | 792 | 0.2242 | 0.9252 |
0.0569 | 73.0 | 803 | 0.2450 | 0.9097 |
0.0476 | 74.0 | 814 | 0.1686 | 0.9408 |
0.0587 | 75.0 | 825 | 0.2537 | 0.9159 |
0.056 | 76.0 | 836 | 0.2437 | 0.9190 |
0.0613 | 77.0 | 847 | 0.2664 | 0.9128 |
0.0554 | 78.0 | 858 | 0.2851 | 0.9003 |
0.0522 | 79.0 | 869 | 0.2326 | 0.9221 |
0.0564 | 80.0 | 880 | 0.2392 | 0.9283 |
0.052 | 81.0 | 891 | 0.2298 | 0.9252 |
0.0489 | 82.0 | 902 | 0.2626 | 0.9190 |
0.0545 | 83.0 | 913 | 0.2442 | 0.9159 |
0.054 | 84.0 | 924 | 0.1613 | 0.9439 |
0.0481 | 85.0 | 935 | 0.2730 | 0.9190 |
0.0541 | 86.0 | 946 | 0.2194 | 0.9315 |
0.0489 | 87.0 | 957 | 0.1749 | 0.9470 |
0.0515 | 88.0 | 968 | 0.1577 | 0.9502 |
0.05 | 89.0 | 979 | 0.2191 | 0.9252 |
0.0484 | 90.0 | 990 | 0.2574 | 0.9252 |
0.0503 | 91.0 | 1001 | 0.1792 | 0.9408 |
0.0434 | 92.0 | 1012 | 0.2147 | 0.9377 |
0.0449 | 93.0 | 1023 | 0.2430 | 0.9159 |
0.0464 | 94.0 | 1034 | 0.2486 | 0.9159 |
0.0469 | 95.0 | 1045 | 0.1922 | 0.9408 |
0.0449 | 96.0 | 1056 | 0.2005 | 0.9283 |
0.0456 | 97.0 | 1067 | 0.2175 | 0.9346 |
0.0425 | 98.0 | 1078 | 0.1975 | 0.9346 |
0.0419 | 99.0 | 1089 | 0.2070 | 0.9283 |
0.0363 | 100.0 | 1100 | 0.2175 | 0.9283 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for talli96123/meat_calssify_fresh_crop_fixed_overlap_epoch100_V_0_2
Base model
google/vit-base-patch16-224-in21k