my_awesome_billsum_model
This model is a fine-tuned version of GanjinZero/biobart-v2-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7014
- Rouge1: 0.2497
- Rouge2: 0.0875
- Rougel: 0.2205
- Rougelsum: 0.2206
- Gen Len: 13.75
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 76 | 0.7373 | 0.2522 | 0.0914 | 0.227 | 0.2269 | 13.25 |
No log | 2.0 | 152 | 0.7116 | 0.2388 | 0.0749 | 0.2068 | 0.2062 | 13.69 |
No log | 3.0 | 228 | 0.7020 | 0.2712 | 0.0956 | 0.2368 | 0.236 | 14.09 |
No log | 4.0 | 304 | 0.7014 | 0.2497 | 0.0875 | 0.2205 | 0.2206 | 13.75 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tanatapanun/bio-bart-v2-fine-tuned-4-epochs
Base model
GanjinZero/biobart-v2-base