metadata
license: apache-2.0
base_model: GanjinZero/biobart-v2-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: fine-tuned-BioBART-20-epochs-wang-lab
results: []
fine-tuned-BioBART-20-epochs-wang-lab
This model is a fine-tuned version of GanjinZero/biobart-v2-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0360
- Rouge1: 0.308
- Rouge2: 0.1254
- Rougel: 0.2791
- Rougelsum: 0.2797
- Gen Len: 15.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 301 | 0.7404 | 0.2534 | 0.1025 | 0.2218 | 0.221 | 15.29 |
0.851 | 2.0 | 602 | 0.7099 | 0.2907 | 0.1069 | 0.255 | 0.2557 | 15.04 |
0.851 | 3.0 | 903 | 0.6956 | 0.2652 | 0.1049 | 0.2313 | 0.23 | 16.04 |
0.5436 | 4.0 | 1204 | 0.7288 | 0.3168 | 0.129 | 0.286 | 0.2872 | 15.11 |
0.3356 | 5.0 | 1505 | 0.7856 | 0.2869 | 0.1041 | 0.2569 | 0.2601 | 15.4 |
0.3356 | 6.0 | 1806 | 0.8174 | 0.2863 | 0.1214 | 0.2447 | 0.2444 | 15.95 |
0.1807 | 7.0 | 2107 | 0.8477 | 0.3048 | 0.1169 | 0.2787 | 0.2797 | 15.82 |
0.1807 | 8.0 | 2408 | 0.8816 | 0.3118 | 0.1227 | 0.2726 | 0.2733 | 15.66 |
0.1072 | 9.0 | 2709 | 0.9081 | 0.2988 | 0.1169 | 0.2665 | 0.2668 | 14.73 |
0.0649 | 10.0 | 3010 | 0.9342 | 0.2869 | 0.1175 | 0.2531 | 0.2535 | 15.63 |
0.0649 | 11.0 | 3311 | 0.9588 | 0.3094 | 0.1212 | 0.2722 | 0.2747 | 15.77 |
0.0376 | 12.0 | 3612 | 0.9761 | 0.3147 | 0.1197 | 0.2867 | 0.2882 | 15.62 |
0.0376 | 13.0 | 3913 | 0.9870 | 0.3144 | 0.1172 | 0.2843 | 0.285 | 16.09 |
0.0244 | 14.0 | 4214 | 0.9918 | 0.3217 | 0.1267 | 0.2931 | 0.2942 | 15.94 |
0.0145 | 15.0 | 4515 | 1.0044 | 0.3102 | 0.1196 | 0.2801 | 0.2815 | 15.91 |
0.0145 | 16.0 | 4816 | 1.0152 | 0.3094 | 0.1316 | 0.2796 | 0.2804 | 16.01 |
0.0094 | 17.0 | 5117 | 1.0290 | 0.317 | 0.1133 | 0.2838 | 0.2857 | 15.77 |
0.0094 | 18.0 | 5418 | 1.0337 | 0.3006 | 0.1216 | 0.2712 | 0.272 | 15.9 |
0.0066 | 19.0 | 5719 | 1.0346 | 0.307 | 0.1254 | 0.2785 | 0.2797 | 15.85 |
0.0047 | 20.0 | 6020 | 1.0360 | 0.308 | 0.1254 | 0.2791 | 0.2797 | 15.85 |
Framework versions
- Transformers 4.36.2
- Pytorch 1.12.1+cu113
- Datasets 2.15.0
- Tokenizers 0.15.0