my_awesome_model

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0808
  • Accuracy: 0.8289
  • F1: 0.8595
  • Precision: 0.8864
  • Recall: 0.8342

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 47 0.1056 0.7059 0.7788 0.8684 0.7059
No log 2.0 94 0.0961 0.7219 0.7895 0.8710 0.7219
No log 3.0 141 0.1042 0.7594 0.8045 0.8554 0.7594
No log 4.0 188 0.0899 0.8021 0.8427 0.8876 0.8021
No log 5.0 235 0.0911 0.8182 0.8540 0.8807 0.8289
No log 6.0 282 0.0808 0.8289 0.8595 0.8864 0.8342
No log 7.0 329 0.0885 0.8503 0.8689 0.8883 0.8503
No log 8.0 376 0.0873 0.8396 0.8634 0.8827 0.8449
No log 9.0 423 0.0926 0.8342 0.8579 0.8771 0.8396
No log 10.0 470 0.0904 0.8342 0.8603 0.8820 0.8396

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
142M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tangminhanh/my_awesome_model

Finetuned
(135)
this model