tanoManzo's picture
End of training
4b92101 verified
---
library_name: transformers
base_model: vivym/DNABERT-2-117M
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: dnabert2_ft_BioS73_1kbpHG19_DHSs_H3K27AC_one_shot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dnabert2_ft_BioS73_1kbpHG19_DHSs_H3K27AC_one_shot
This model is a fine-tuned version of [vivym/DNABERT-2-117M](https://huggingface.co/vivym/DNABERT-2-117M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1417
- F1 Score: 0.7692
- Precision: 0.7143
- Recall: 0.8333
- Accuracy: 0.7778
- Auc: 0.85
- Prc: 0.8533
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:----:|:------:|
| 0.3716 | 18.5185 | 500 | 1.1417 | 0.7692 | 0.7143 | 0.8333 | 0.7778 | 0.85 | 0.8533 |
### Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 2.18.0
- Tokenizers 0.20.0