tanoManzo's picture
End of training
9bbb835 verified
|
raw
history blame
3.81 kB
metadata
base_model: AIRI-Institute/gena-lm-bigbird-base-t2t
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: gena-lm-bigbird-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC
    results: []

gena-lm-bigbird-base-t2t_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of AIRI-Institute/gena-lm-bigbird-base-t2t on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4425
  • F1 Score: 0.8721
  • Precision: 0.8249
  • Recall: 0.9251
  • Accuracy: 0.8582
  • Auc: 0.9367
  • Prc: 0.9328

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.5218 0.0840 500 0.4577 0.7891 0.8196 0.7608 0.7874 0.8723 0.8607
0.4698 0.1680 1000 0.4514 0.8273 0.7836 0.8762 0.8087 0.8879 0.8785
0.448 0.2521 1500 0.4550 0.8350 0.8002 0.8730 0.8197 0.8978 0.8886
0.4463 0.3361 2000 0.4247 0.8392 0.7616 0.9344 0.8128 0.9076 0.9047
0.4264 0.4201 2500 0.4020 0.8010 0.8781 0.7364 0.8087 0.9130 0.9101
0.401 0.5041 3000 0.3818 0.8560 0.7897 0.9344 0.8356 0.9223 0.9200
0.4035 0.5881 3500 0.3980 0.8590 0.7956 0.9335 0.8398 0.9232 0.9183
0.3774 0.6722 4000 0.3752 0.8543 0.8404 0.8685 0.8450 0.9259 0.9245
0.3985 0.7562 4500 0.4618 0.8360 0.8660 0.8081 0.8343 0.9243 0.9251
0.387 0.8402 5000 0.3753 0.8641 0.8377 0.8923 0.8533 0.9310 0.9299
0.3907 0.9242 5500 0.3589 0.8537 0.8528 0.8547 0.8469 0.9284 0.9284
0.3775 1.0082 6000 0.4544 0.8622 0.8517 0.8730 0.8541 0.9310 0.9296
0.3507 1.0923 6500 0.4114 0.8722 0.8177 0.9344 0.8568 0.9326 0.9246
0.3476 1.1763 7000 0.4028 0.8747 0.8442 0.9074 0.8640 0.9354 0.9348
0.3676 1.2603 7500 0.3671 0.8684 0.8487 0.8891 0.8592 0.9362 0.9358
0.3651 1.3443 8000 0.3837 0.8713 0.8418 0.9029 0.8605 0.9369 0.9364
0.3468 1.4283 8500 0.4281 0.8648 0.8491 0.8811 0.8560 0.9342 0.9309
0.3447 1.5124 9000 0.3955 0.8727 0.8171 0.9364 0.8571 0.9387 0.9380
0.35 1.5964 9500 0.4425 0.8721 0.8249 0.9251 0.8582 0.9367 0.9328

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0