tanoManzo's picture
End of training
e9be96c verified
metadata
base_model: AIRI-Institute/gena-lm-bigbird-base-t2t
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: gena-lm-bigbird-base-t2t_ft_BioS73_1kbpHG19_DHSs_H3K27AC
    results: []

gena-lm-bigbird-base-t2t_ft_BioS73_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of AIRI-Institute/gena-lm-bigbird-base-t2t on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6204
  • F1 Score: 0.8827
  • Precision: 0.8652
  • Recall: 0.9008
  • Accuracy: 0.8722
  • Auc: 0.9384
  • Prc: 0.9368

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.4735 0.1864 500 0.4718 0.8258 0.7264 0.9567 0.7846 0.8950 0.8902
0.4071 0.3727 1000 0.4255 0.8534 0.7923 0.9246 0.8304 0.9117 0.9095
0.391 0.5591 1500 0.4176 0.8508 0.8496 0.8520 0.8405 0.9184 0.9132
0.3833 0.7454 2000 0.3674 0.8655 0.8235 0.9120 0.8487 0.9209 0.9082
0.3812 0.9318 2500 0.4179 0.8652 0.7974 0.9455 0.8427 0.9255 0.9217
0.3673 1.1182 3000 0.3696 0.8714 0.8180 0.9323 0.8531 0.9295 0.9266
0.3469 1.3045 3500 0.3985 0.8696 0.8121 0.9358 0.8502 0.9324 0.9307
0.3452 1.4909 4000 0.3347 0.8724 0.8685 0.8764 0.8632 0.9327 0.9316
0.3241 1.6772 4500 0.4804 0.8753 0.8316 0.9239 0.8595 0.9350 0.9341
0.3529 1.8636 5000 0.4180 0.8789 0.8330 0.9302 0.8632 0.9366 0.9364
0.3102 2.0499 5500 0.5486 0.8851 0.8460 0.9281 0.8714 0.9378 0.9371
0.3217 2.2363 6000 0.5019 0.8856 0.8498 0.9246 0.8725 0.9390 0.9369
0.272 2.4227 6500 0.4057 0.8844 0.8591 0.9113 0.8729 0.9416 0.9410
0.303 2.6090 7000 0.5302 0.8806 0.8187 0.9525 0.8621 0.9372 0.9321
0.2944 2.7954 7500 0.4633 0.8819 0.8676 0.8966 0.8718 0.9405 0.9392
0.269 2.9817 8000 0.5419 0.8756 0.8042 0.9609 0.8543 0.9432 0.9423
0.2168 3.1681 8500 0.6204 0.8827 0.8652 0.9008 0.8722 0.9384 0.9368

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0