metadata
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-500m-1000g
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: nucleotide-transformer-500m-1000g_ft_BioS45_1kbpHG19_DHSs_H3K27AC
results: []
nucleotide-transformer-500m-1000g_ft_BioS45_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-500m-1000g on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0165
- F1 Score: 0.8158
- Precision: 0.8524
- Recall: 0.7823
- Accuracy: 0.8157
- Auc: 0.9011
- Prc: 0.8977
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
---|---|---|---|---|---|---|---|---|---|
0.529 | 0.2103 | 500 | 0.4367 | 0.8252 | 0.7590 | 0.9040 | 0.8002 | 0.8862 | 0.8840 |
0.4486 | 0.4207 | 1000 | 0.4420 | 0.8333 | 0.7765 | 0.8992 | 0.8124 | 0.8919 | 0.8853 |
0.4422 | 0.6310 | 1500 | 0.4717 | 0.8330 | 0.7471 | 0.9411 | 0.8031 | 0.8979 | 0.8959 |
0.4313 | 0.8414 | 2000 | 0.4178 | 0.8375 | 0.7597 | 0.9331 | 0.8111 | 0.9063 | 0.9030 |
0.4131 | 1.0517 | 2500 | 0.5239 | 0.8404 | 0.8380 | 0.8427 | 0.8330 | 0.9017 | 0.8967 |
0.3597 | 1.2621 | 3000 | 0.4806 | 0.8418 | 0.7864 | 0.9056 | 0.8225 | 0.9018 | 0.8987 |
0.3415 | 1.4724 | 3500 | 0.6284 | 0.8061 | 0.8790 | 0.7444 | 0.8132 | 0.9047 | 0.9046 |
0.3372 | 1.6828 | 4000 | 0.4651 | 0.8314 | 0.8355 | 0.8274 | 0.8250 | 0.9039 | 0.9042 |
0.3294 | 1.8931 | 4500 | 0.5134 | 0.8382 | 0.7631 | 0.9298 | 0.8128 | 0.9023 | 0.9040 |
0.2382 | 2.1035 | 5000 | 0.8833 | 0.8245 | 0.8289 | 0.8202 | 0.8178 | 0.8980 | 0.8988 |
0.1741 | 2.3138 | 5500 | 1.0165 | 0.8158 | 0.8524 | 0.7823 | 0.8157 | 0.9011 | 0.8977 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0