tanoManzo's picture
End of training
479eebb verified
metadata
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-500m-1000g
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: nucleotide-transformer-500m-1000g_ft_BioS73_1kbpHG19_DHSs_H3K27AC
    results: []

nucleotide-transformer-500m-1000g_ft_BioS73_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-500m-1000g on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7864
  • F1 Score: 0.8674
  • Precision: 0.8219
  • Recall: 0.9183
  • Accuracy: 0.8502
  • Auc: 0.9181
  • Prc: 0.9081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.4538 0.1864 500 0.5156 0.8245 0.7173 0.9693 0.7797 0.9012 0.8953
0.4088 0.3727 1000 0.3942 0.8517 0.8082 0.9001 0.8327 0.9133 0.9102
0.4018 0.5591 1500 0.3782 0.8518 0.8159 0.8911 0.8345 0.9127 0.9086
0.4043 0.7454 2000 0.3631 0.8599 0.7934 0.9385 0.8367 0.9176 0.9111
0.3866 0.9318 2500 0.4011 0.8586 0.7878 0.9434 0.8341 0.9161 0.9099
0.332 1.1182 3000 0.4966 0.8603 0.8286 0.8946 0.8449 0.9211 0.9181
0.2948 1.3045 3500 0.4844 0.8288 0.8643 0.7961 0.8245 0.9155 0.9026
0.3062 1.4909 4000 0.4114 0.8449 0.8675 0.8233 0.8386 0.9223 0.9170
0.2935 1.6772 4500 0.5448 0.8767 0.8346 0.9232 0.8613 0.9209 0.9102
0.3113 1.8636 5000 0.4740 0.8561 0.8329 0.8806 0.8420 0.9200 0.9152
0.2362 2.0499 5500 0.8302 0.8514 0.8544 0.8485 0.8420 0.9222 0.9178
0.1752 2.2363 6000 0.8359 0.8681 0.8419 0.8959 0.8546 0.9189 0.9049
0.1585 2.4227 6500 0.6381 0.8630 0.8150 0.9169 0.8446 0.9141 0.9058
0.1535 2.6090 7000 0.7864 0.8674 0.8219 0.9183 0.8502 0.9181 0.9081

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0