nucleotide-transformer-v2-100m-multi-species_ft_BioS73_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-v2-100m-multi-species on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6143
- F1 Score: 0.8664
- Precision: 0.8634
- Recall: 0.8694
- Accuracy: 0.8569
- Auc: 0.9317
- Prc: 0.9258
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
---|---|---|---|---|---|---|---|---|---|
0.4891 | 0.1864 | 500 | 0.4273 | 0.8394 | 0.7643 | 0.9309 | 0.8099 | 0.8996 | 0.8989 |
0.3821 | 0.3727 | 1000 | 0.3670 | 0.8630 | 0.8349 | 0.8932 | 0.8487 | 0.9225 | 0.9213 |
0.3759 | 0.5591 | 1500 | 0.3686 | 0.8642 | 0.8551 | 0.8736 | 0.8535 | 0.9258 | 0.9234 |
0.3672 | 0.7454 | 2000 | 0.3463 | 0.8709 | 0.8613 | 0.8806 | 0.8606 | 0.9289 | 0.9235 |
0.3466 | 0.9318 | 2500 | 0.3887 | 0.8699 | 0.7989 | 0.9546 | 0.8476 | 0.9331 | 0.9294 |
0.3271 | 1.1182 | 3000 | 0.3899 | 0.8735 | 0.8405 | 0.9092 | 0.8595 | 0.9359 | 0.9337 |
0.2984 | 1.3045 | 3500 | 0.3510 | 0.8782 | 0.8386 | 0.9218 | 0.8636 | 0.9342 | 0.9293 |
0.2989 | 1.4909 | 4000 | 0.3725 | 0.8709 | 0.8796 | 0.8624 | 0.8636 | 0.9313 | 0.9217 |
0.2963 | 1.6772 | 4500 | 0.4155 | 0.8778 | 0.8677 | 0.8883 | 0.8681 | 0.9362 | 0.9274 |
0.3041 | 1.8636 | 5000 | 0.3754 | 0.8804 | 0.8527 | 0.9099 | 0.8681 | 0.9369 | 0.9309 |
0.2487 | 2.0499 | 5500 | 0.5066 | 0.8743 | 0.8581 | 0.8911 | 0.8632 | 0.9312 | 0.9222 |
0.1986 | 2.2363 | 6000 | 0.5666 | 0.8786 | 0.8433 | 0.9169 | 0.8647 | 0.9242 | 0.9059 |
0.1841 | 2.4227 | 6500 | 0.6143 | 0.8664 | 0.8634 | 0.8694 | 0.8569 | 0.9317 | 0.9258 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0
- Downloads last month
- 24