See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: taozi555/bagel
type: sharegpt
# - path: jondurbin/cinematika-v0.1
# type: text
- path: MinervaAI/Aesir-Preview
type: sharegpt
- path: Norquinal/claude_multiround_chat_30k
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out
chat_template: alpaca
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: waifu-8b
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_steps: 100
eval_table_size:
saves_per_epoch:
save_steps: 100
save_total_limit: 20
debug:
deepspeed: /workspace/deepspeed.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
out
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7773
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0419 | 0.0 | 1 | 1.1113 |
0.9179 | 0.07 | 100 | 0.8886 |
1.0123 | 0.14 | 200 | 0.8822 |
0.9106 | 0.21 | 300 | 0.8701 |
0.8992 | 0.28 | 400 | 0.8637 |
0.7915 | 0.35 | 500 | 0.8527 |
0.9123 | 0.42 | 600 | 0.8448 |
0.7849 | 0.49 | 700 | 0.8381 |
0.8381 | 0.56 | 800 | 0.8344 |
0.7652 | 0.63 | 900 | 0.8230 |
0.9006 | 0.7 | 1000 | 0.8167 |
0.8589 | 0.77 | 1100 | 0.8088 |
0.7635 | 0.84 | 1200 | 0.8016 |
0.7696 | 0.91 | 1300 | 0.7951 |
0.8476 | 0.98 | 1400 | 0.7879 |
0.6031 | 1.03 | 1500 | 0.8063 |
0.5386 | 1.09 | 1600 | 0.8065 |
0.5298 | 1.16 | 1700 | 0.8015 |
0.5736 | 1.23 | 1800 | 0.7979 |
0.5761 | 1.3 | 1900 | 0.7939 |
0.5576 | 1.37 | 2000 | 0.7917 |
0.4814 | 1.44 | 2100 | 0.7879 |
0.5146 | 1.51 | 2200 | 0.7842 |
0.4577 | 1.58 | 2300 | 0.7832 |
0.4821 | 1.65 | 2400 | 0.7806 |
0.6088 | 1.72 | 2500 | 0.7782 |
0.5113 | 1.79 | 2600 | 0.7785 |
0.5861 | 1.86 | 2700 | 0.7779 |
0.4885 | 1.93 | 2800 | 0.7773 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 33
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for taozi555/llama3-Mirage-Walker-8b-v0.2
Base model
meta-llama/Meta-Llama-3-8B