EstBERT128_Rubric / README.md
ksirts's picture
Update README.md
ede5845
|
raw
history blame
8.29 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: EstBERT128_Rubric
    results:
      - task:
          name: Text Classification
          type: text-classification
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8329238295555115
language: et
license: cc-by-4.0
widget:
  - text: >-
      Lumesadu ja tuisk levib Kagu-Eestist hommikuks üle maa, päeval läheb sadu
      intensiivsemaks. Nähtavus on halb. Lund lisandub 10, kohati kuni 20 cm.
      Tiheda saju, tugeva tuule ja tuisu tõttu halvenevad liiklustingimused.
    example_title: domestic
  - text: >-
      Brüsselis puhkenud korruptsiooniskandaalis kahtlustatakse eurosaadikuid
      Lähis-Idast meelehea vastuvõtmises. Kinnipeetute seas on üks Euroopa
      Parlamendi asepresidente, Belgia prokuratuuri tähelepanu orbiidis teisigi
      eurosaadikuid.
    example_title: world
  - text: >-
      Järgmiseks aastaks riigi poolt ette nähtud summa ajakirjanduse
      kojukandetoetuseks on sama mis kaks aastat tagasi. See tähendab
      märkimisväärset hinnatõusu ja reaalset ohtu, et ajakirjandus on muutumas
      luksusteenuseks.
    example_title: opinion

EstBERT128_Rubric

This model is a fine-tuned version of tartuNLP/EstBERT. It achieves the following results on the test set:

  • Loss: 2.0552
  • Accuracy: 0.8329

How to use?

You can use this model with the Transformers pipeline for text classification.

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("tartuNLP/EstBERT128_Rubric")
model = AutoModelForSequenceClassification.from_pretrained("tartuNLP/EstBERT128_Rubric")

nlp = pipeline("ner", model=bertner, tokenizer=tokenizer)
text = "Kaia Kanepi (WTA 57.) langes USA-s Charlestonis toimuval WTA 500 kategooria tenniseturniiril konkurentsist kaheksandikfinaalis, kaotades poolatarile Magda Linette'ile (WTA 64.) 3 : 6, 6 : 4, 2 : 6."
result = nlp(text)

print(result)
[{'label': 'SPORT', 'score': 0.9999998807907104}]

Model description

A single linear layer classifier is fit on top of the last layer [CLS] token representation of the EstBERT model. The model is fully fine-tuned during training.

Intended uses & limitations

This model is intended to be used as it is. We hope that it can prove to be useful to somebody but we do not guarantee that the model is useful for anything or that the predictions are accurate on new data.

Citation information

If you use this model, please cite:

@inproceedings{tanvir2021estbert,
  title={EstBERT: A Pretrained Language-Specific BERT for Estonian},
  author={Tanvir, Hasan and Kittask, Claudia and Eiche, Sandra and Sirts, Kairit},
  booktitle={Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
  pages={11--19},
  year={2021}
}

Training and evaluation data

The model was trained and evaluated on the rubric categories of the Estonian Valence dataset. The data was split into train/dev/test parts with 70/10/20 proportions.

The nine rubric labels in the Estonian Valence dataset are:

  • ARVAMUS (opinion)
  • EESTI (domestic)
  • ELU-O (life)
  • KOMM-O-ELU (comments)
  • KOMM-P-EESTI (comments)
  • KRIMI (crime)
  • KULTUUR (culture)
  • SPORT (sports)
  • VALISMAA (world)

It probably makes sense to treat the two comments categories (KOMM-O-ELU and KOMM-P-EESTI) as a single category.

Training procedure

The model was trained for maximu 100 epochs using early stopping procedure. After every epoch, the accuracy was calculated on the development set. If the development set accuracy did not improve for 20 epochs, the training was stopped.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
  • lr_scheduler_type: polynomial
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

The final model was taken after 39th epoch.

Training Loss Epoch Step Validation Loss Accuracy
1.1147 1.0 179 0.7421 0.7445
0.4323 2.0 358 0.6863 0.7813
0.1442 3.0 537 0.8545 0.7838
0.0496 4.0 716 1.2872 0.7494
0.0276 5.0 895 1.4702 0.7641
0.0202 6.0 1074 1.3764 0.7838
0.0144 7.0 1253 1.5762 0.7887
0.0078 8.0 1432 1.8806 0.7666
0.0177 9.0 1611 1.6159 0.7912
0.0223 10.0 1790 1.5863 0.7936
0.0108 11.0 1969 1.8051 0.7912
0.0201 12.0 2148 1.9344 0.7789
0.0252 13.0 2327 1.7978 0.8084
0.0104 14.0 2506 1.8779 0.7887
0.0138 15.0 2685 1.6456 0.8133
0.0066 16.0 2864 1.9668 0.7912
0.0148 17.0 3043 2.0068 0.7813
0.0128 18.0 3222 2.1539 0.7617
0.0115 19.0 3401 2.2490 0.7838
0.0186 20.0 3580 2.1768 0.7666
0.0051 21.0 3759 1.8859 0.7912
0.001 22.0 3938 2.0132 0.7912
0.0133 23.0 4117 1.8786 0.8084
0.0149 24.0 4296 2.2307 0.7961
0.014 25.0 4475 2.0041 0.8206
0.0132 26.0 4654 1.8872 0.8133
0.0079 27.0 4833 1.9357 0.7961
0.0078 28.0 5012 2.1891 0.7936
0.0126 29.0 5191 2.0207 0.8034
0.0003 30.0 5370 2.1917 0.8010
0.0015 31.0 5549 2.0417 0.8157
0.0056 32.0 5728 2.1172 0.8084
0.0058 33.0 5907 2.1921 0.8206
0.0001 34.0 6086 2.0079 0.8206
0.0031 35.0 6265 2.2447 0.8206
0.0007 36.0 6444 2.1802 0.8084
0.0061 37.0 6623 2.1103 0.8157
0.0 38.0 6802 2.2265 0.8084
0.0035 39.0 6981 2.0549 0.8329
0.0038 40.0 7160 2.1352 0.8182
0.0001 41.0 7339 2.0975 0.8108
0.0 42.0 7518 2.0833 0.8256
0.0 43.0 7697 2.1020 0.8280
0.0 44.0 7876 2.0841 0.8305
0.0 45.0 8055 2.2085 0.8182
0.0 46.0 8234 2.0756 0.8329
0.0 47.0 8413 2.1237 0.8305
0.0 48.0 8592 2.1217 0.8280
0.0052 49.0 8771 2.3567 0.8059
0.0014 50.0 8950 2.1710 0.8206
0.0032 51.0 9129 2.1452 0.8206
0.0 52.0 9308 2.2820 0.8133
0.0001 53.0 9487 2.2279 0.8157
0.0 54.0 9666 2.1841 0.8182
0.0 55.0 9845 2.1208 0.8231
0.0 56.0 10024 2.0967 0.8256
0.0002 57.0 10203 2.1911 0.8231
0.0 58.0 10382 2.2014 0.8231
0.0 59.0 10561 2.2014 0.8182

Framework versions

  • Transformers 4.14.1
  • Pytorch 1.10.1+cu113
  • Datasets 1.16.1
  • Tokenizers 0.10.3

Contact

Kairit Sirts: [email protected]