llm-jp-3-13b-it / README.md
tatsuuuu's picture
Update README.md
d7f404e verified
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** tatsuuuu
- **License:** apache-2.0
- **Finetuned from model :** llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# 実行したコード
# python 3.10.12
!pip install -U pip
!pip install -U transformers
!pip install -U bitsandbytes
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
!pip install -U trl
!pip install -U wandb
!pip install ipywidgets --upgrade
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
logging,
)
from peft import (
LoraConfig,
PeftModel,
get_peft_model,
)
import os, torch, gc
from datasets import load_dataset
import bitsandbytes as bnb
from trl import SFTTrainer
# Hugging Face Token
HF_TOKEN = "write権限のあるトークン"
# モデルを読み込み。
# llm-jp-3 1.8B, 3.7B, 13Bのsnapshotをダウンロード済みでmodelsディレクトリに格納してあります。
# base_model_idの値はomnicampusの環境におけるモデルのパスを表しており、それ以外の環境で実行する場合は変更の必要があります。
# その他のモデルは取得に承諾が必要なため、各自でダウンロードお願いします。
base_model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a" #Fine-Tuningするベースモデル
# omnicampus以外の環境をご利用の方は以下をご利用ください。
# base_model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-finetune" #Fine-Tuningしたモデルにつけたい名前
"""
bnb_config: 量子化の設定
- load_in_4bit:
- 4bit量子化形式でモデルをロード
- bnb_4bit_quant_type:
- 量子化の形式を指定
- bnb_4bit_compute_dtype:
- 量子化された重みを用いて計算する際のデータ型
"""
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # nf4は通常のINT4より精度が高く、ニューラルネットワークの分布に最適です
bnb_4bit_compute_dtype=torch.bfloat16,
)
"""
model: モデル
- base_model:
- 読み込むベースモデル (事前に定義したもの)
- quantization_config:
- bnb_configで設定した量子化設定
- device_map:
- モデルを割り当てるデバイス (CPU/GPU) "auto"で自動に割り当てられます。
tokenizer: トークナイザー
- base_model:
- 読み込むベースモデル (事前に定義したもの)
- trust_remote_code:
- リモートコードの実行を許可 (カスタムモデルなど)
"""
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
"""
find_all_linear_names: モデル内の4bit量子化線形層を探します。
"""
def find_all_linear_names(model):
cls = bnb.nn.Linear4bit # 4bit量子化線形層クラスを指定
lora_module_names = set() # ここに取得した線形層を保持します。
# モデル内の全てのモジュールを探索します
for name, module in model.named_modules():
if isinstance(module, cls): # モジュールが4bit量子化線形層の場合
names = name.split('.') # モジュールの名前を分割 (ネストされてる際などに対処)
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) # 最下層の名前をlora_module_namesに追加
# 'lm_head' は16ビット演算の際に除外する必要があるため、lora_module_namesから削除
if 'lm_head' in lora_module_names:
lora_module_names.remove('lm_head')
return list(lora_module_names) # lora_module_namesをリストに変換して返します。
modules = find_all_linear_names(model)
"""
peft_config: PEFTの構成設定
- r
- LoRA のランク (4, 8, 16 ,32...)
- 増やすほど学習が捗るが, 過学習のリスクも高まるので注意
- lora_alpha
- LoRAのスケーリング係数
- lora_dropout
- ドロップアウト率(過学習を防ぐための割合)
- bias
- バイアス項の扱い ("none"の場合、LoRAはバイアスを学習しない)
- task_type
- タスクタイプ
- target_modules
- LoRAを適用するターゲットモジュール (前のコードで特定した層)
"""
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=modules,
)
model = get_peft_model(model, peft_config)
"""
学習に用いるデータセットの指定
今回はLLM-jp の公開している Ichikara Instruction を使います。データにアクセスするためには申請が必要ですので、使いたい方のみ申請をしてください。
Ichikara Instruciton を Hugging Face Hub にて公開することはお控えください。
また、CC-BY-NC-SAですのでモデルはライセンスを継承する前提でお使いください。
下記のリンクから申請を終えた先に Google Drive があり、Distribution20241221_all というフォルダごとダウンロードしてください。
今回は「ichikara-instruction-003-001-1.json」を使います。必要であれば展開(!unzip など)し、データセットのパスを適切に指定してください。
omnicampusの開発環境では取得したデータを左側にドラッグアンドドロップしてお使いください。
https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
"""
dataset = load_dataset("json", data_files="./ichikara-instruction-003-001-1.json")
dataset
# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""
"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
input = examples["text"] # 入力データ
output = examples["output"] # 出力データ
text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass
# # 各データにフォーマットを適用
dataset = dataset.map(
formatting_prompts_func,
num_proc= 4, # 並列処理数を指定
)
dataset
# データを確認
print(dataset["train"]["formatted_text"][3])
# データをtrainデータとtestデータに分割 (test_sizeの比率に)
# dataset = dataset["train"].train_test_split(test_size=0.1)
# dataset
"""
training_arguments: 学習の設定
- output_dir:
-トレーニング後のモデルを保存するディレクトリ
- per_device_train_batch_size:
- デバイスごとのトレーニングバッチサイズ
- per_device_
_batch_size:
- デバイスごとの評価バッチサイズ
- gradient_accumulation_steps:
- 勾配を更新する前にステップを積み重ねる回数
- optim:
- オプティマイザの設定
- num_train_epochs:
- エポック数
- eval_strategy:
- 評価の戦略 ("no"/"steps"/"epoch")
- eval_steps:
- eval_strategyが"steps"のとき、評価を行うstep間隔
- logging_strategy:
- ログ記録の戦略
- logging_steps:
- ログを出力するステップ間隔
- warmup_steps:
- 学習率のウォームアップステップ数
- save_steps:
- モデルを保存するステップ間隔
- save_total_limit:
- 保存しておくcheckpointの数
- max_steps:
- トレーニングの最大ステップ数
- learning_rate:
- 学習率
- fp16:
- 16bit浮動小数点の使用設定(第8回演習を参考にすると良いです)
- bf16:
- BFloat16の使用設定
- group_by_length:
- 入力シーケンスの長さによりバッチをグループ化 (トレーニングの効率化)
- report_to:
- ログの送信先 ("wandb"/"tensorboard"など)
"""
training_arguments = TrainingArguments(
output_dir=new_model_id,
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
optim="paged_adamw_32bit",
num_train_epochs=1,
logging_strategy="steps",
logging_steps=10,
warmup_steps=10,
save_steps=100,
save_total_limit = 2,
max_steps = -1,
learning_rate=5e-5,
fp16=False,
bf16=False,
seed = 3407,
group_by_length=True,
report_to="none"
)
"""
SFTTrainer: Supervised Fine-Tuningに関する設定
- model:
- 読み込んだベースのモデル
- train_dataset:
- トレーニングに使用するデータセット
- eval_dataset:
- 評価に使用するデータセット
- peft_config:
- PEFT(Parameter-Efficient Fine-Tuning)の設定(LoRAを利用する場合に指定)
- max_seq_length:
- モデルに入力されるシーケンスの最大トークン長
- dataset_text_field:
- データセット内の学習に使うテキストを含むフィールド名
- tokenizer:
- モデルに対応するトークナイザー
- args:
- トレーニングに使用するハイパーパラメータ(TrainingArgumentsの設定を指定)
- packing:
- 入力シーケンスのパッキングを行うかどうかの設定 (False に設定することで、各入力を独立して扱う)
"""
trainer = SFTTrainer(
model=model,
train_dataset=dataset["train"],
peft_config=peft_config,
max_seq_length= 512,
dataset_text_field="formatted_text",
tokenizer=tokenizer,
args=training_arguments,
packing= False,
)
model.config.use_cache = False # キャッシュ機能を無効化
trainer.train() # トレーニングを実行
# タスクとなるデータの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
import json
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# モデルによるタスクの推論。
from tqdm import tqdm
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
# こちらで生成されたjsolを提出してください。
# 本コードではinputとeval_aspectも含んでいますが、なくても問題ありません。
# 必須なのはtask_idとoutputとなります。
import re
jsonl_id = re.sub(".*/", "", new_model_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
# モデルとトークナイザーをHugging Faceにアップロード
model.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving
tokenizer.push_to_hub(new_model_id, token=HF_TOKEN, private=True) # Online saving
# 推論用コード
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
# notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり)
!pip install ipywidgets --upgrade
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
# Hugging Faceで取得したTokenをこちらに貼る。
HF_TOKEN = "Hugging Face Token"
# ベースとなるモデルと学習したLoRAのアダプタ。
# model_idの値はomnicampusの環境におけるモデルのパスを表しており、それ以外の環境で実行する場合は変更の必要があります。
model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
# omnicampus以外の環境をご利用の方は以下をご利用ください。
# base_model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "" # こちらにアップロードしたHugging FaceのIDを指定してください。
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# gemma
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**input_ids, max_new_tokens=512, do_sample=False, repetition_penalty=1.2,)
output = tokenizer.decode(outputs[0][input_ids.input_ids.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
# llmjp
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
# こちらで生成されたjsolを提出してください。
# 本コードではinputとeval_aspectも含んでいますが、なくても問題ありません。
# 必須なのはtask_idとoutputとなります。
import re
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')