MatanBenChorin's picture
Update README.md
f85a042
|
raw
history blame
2.98 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: hebert-finetuned-hebrew-metaphor
    results: []
widget:
  - text: >-
      לטחון [SEP] להכנת קפה במקינטה יש לטחון את הקפה טחינה גסה יותר מאשר קפה
      לאספרסו
  - text: לטחון [SEP] תעירו אותי שיקרה עוד משהו מעניין, בינתיים אין מה לטחון את זה
  - text: >-
      לבשל [SEP]  השחקן השתמש ביכולותיו הפיזיות, הגובה והקפיצה שלו, כדי לבשל
      ולהבקיע שערים
  - text: לבשל [SEP] שישי בבוקר זה זמן טוב כדי לבשל ארוחה יפה

hebert-finetuned-hebrew-metaphor

לחלום, לחתוך, לעוף, לפרק, להדליק, לכבס, לכופף, לרסק, לבשל, למחוק, לקפוף, לקרוע, לקצור, לרקוד, לשבור, לשדוד, לשתות, לטחון, לתפור, לזרוע

This model is a fine-tuned version of avichr/heBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4682
  • Accuracy: 0.9510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 389 0.1813 0.9379
0.2546 2.0 778 0.2309 0.9479
0.08 3.0 1167 0.3342 0.9492
0.0298 4.0 1556 0.4076 0.9460
0.0298 5.0 1945 0.3803 0.9485
0.0105 6.0 2334 0.3674 0.9454
0.0077 7.0 2723 0.5356 0.9410
0.0088 8.0 3112 0.4776 0.9422
0.0044 9.0 3501 0.4258 0.9504
0.0044 10.0 3890 0.4305 0.9523
0.001 11.0 4279 0.4357 0.9548
0.0031 12.0 4668 0.4770 0.9473
0.0015 13.0 5057 0.4604 0.9523
0.0015 14.0 5446 0.4670 0.9510
0.0022 15.0 5835 0.4682 0.9510

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3