abhishek's picture
abhishek HF staff
Commit From AutoNLP
d28e4b6
|
raw
history blame
1.53 kB
metadata
tags:
  - autonlp
  - question-answering
language: unk
widget:
  - text: Who loves AutoNLP?
    context: Everyone loves AutoNLP
datasets:
  - teacookies/autonlp-data-roberta-base-squad2
co2_eq_emissions: 58.51753681929935

Model Trained Using AutoNLP

  • Problem type: Extractive Question Answering
  • Model ID: 24465524
  • CO2 Emissions (in grams): 58.51753681929935

Validation Metrics

  • Loss: 0.5759999752044678

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465524

Or Python API:

import torch

from transformers import AutoModelForQuestionAnswering, AutoTokenizer

model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465524", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465524", use_auth_token=True)

from transformers import BertTokenizer, BertForQuestionAnswering

question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"

inputs = tokenizer(question, text, return_tensors='pt')

start_positions = torch.tensor([1])

end_positions = torch.tensor([3])

outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)

loss = outputs.loss

start_scores = outputs.start_logits

end_scores = outputs.end_logits