|
--- |
|
tags: |
|
- autotrain |
|
- token-classification |
|
language: |
|
- unk |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- teacookies/autotrain-data-20-12-2022_rated_speed3_exam |
|
co2_eq_emissions: |
|
emissions: 17.12192796383268 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Entity Extraction |
|
- Model ID: 2544978148 |
|
- CO2 Emissions (in grams): 17.1219 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.001 |
|
- Accuracy: 1.000 |
|
- Precision: 0.815 |
|
- Recall: 0.855 |
|
- F1: 0.835 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-20-12-2022_rated_speed3_exam-2544978148 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-20-12-2022_rated_speed3_exam-2544978148", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-20-12-2022_rated_speed3_exam-2544978148", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |