mini_eurosat
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on a EuroSat dataset with 100 image in each class. It achieves the following results on the evaluation set:
- Train Loss: 0.2701
- Train Accuracy: 0.9158
- Validation Loss: 0.3930
- Validation Accuracy: 0.9233
- Epoch: 4
Model description
More information needed
Intended uses & limitations
This is just a demo for learning purpose and should not be used in productions
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1065, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
1.6612 | 0.4653 | 1.0561 | 0.6964 | 0 |
0.7501 | 0.7761 | 0.6024 | 0.8248 | 1 |
0.4255 | 0.8559 | 0.4709 | 0.8784 | 2 |
0.3095 | 0.8941 | 0.3980 | 0.9063 | 3 |
0.2701 | 0.9158 | 0.3930 | 0.9233 | 4 |
Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 70
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tejshahi/mini_eurosat
Base model
google/vit-base-patch16-224-in21k