|
|
|
import os |
|
os.system('pip install nltk numpy') |
|
import nltk |
|
import numpy as np |
|
import pickle |
|
nltk.download('punkt') |
|
|
|
from collections import Counter |
|
|
|
def predict_word(model, last_word): |
|
if last_word in model: |
|
next_words = model[last_word] |
|
freq_dist = Counter(next_words) |
|
most_common_word = freq_dist.most_common(1)[0][0] |
|
return most_common_word |
|
else: |
|
return "" |
|
|
|
with open("model.pkl", "rb") as f: |
|
model = pickle.load(f) |
|
|
|
|
|
input_words = input('Input words: ') |
|
for i in range(10): |
|
input_words_list = nltk.word_tokenize(input_words) |
|
last_word = input_words_list[-1] |
|
predicted_word = predict_word(model, last_word) |
|
input_words = f"{input_words}" + " " + f'{predicted_word}' |
|
|
|
print(input_words) |