metadata
license: other
license_name: stabilityai-ai-community
license_link: LICENSE.md
language:
- en
base_model:
- stabilityai/stable-diffusion-3.5-medium
pipeline_tag: text-to-image
Bokeh_Pose_Controlnet

Description
- Input Image: Images processed by openpose/dwpose detection
- Output Image: Generated images with pose control
Openpose enables precise human body structure control, demonstrating better control effects and generalization compared to sd1.5 cn in our tests, and can easily adapt to lora models
Example
input | output | Prompt |
---|---|---|
![]() |
![]() |
1 girl , thinking |
![]() |
![]() |
a man |
![]() |
![]() |
a young woman in room,wear a brown short,golden short hair |
![]() |
![]() |
a man in room,wear a brown vintage shirt,1990s |
Use
We recommend using ComfyUI for local inference
With Bokeh
import torch
from diffusers import StableDiffusion3ControlNetPipeline
from diffusers import SD3ControlNetModel
from diffusers.utils import load_image
controlnet = SD3ControlNetModel.from_pretrained("tensorart/Bokeh_Openpose_Controlnet")
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
"tensorart/bokeh_3.5_medium",
controlnet=controlnet
)
pipe.to("cuda", torch.float16)
control_image = load_image("https://huggingface.co/tensorart/Bokeh_Pose_Control/resolve/main/images/001_pose.png")
prompt = "A woman thinking"
negative_prompt ="anime,render,cartoon,3d"
negative_prompt_3=""
image = pipe(
prompt,
num_inference_steps=30,
negative_prompt=negative_prompt,
control_image=control_image,
height=1728,
width=1152,
guidance_scale=4,
controlnet_conditioning_scale=0.8
).images[0]
image.save('image.jpg')
Contact
- Website: https://tensor.art https://tusiart.com
- Developed by: TensorArt
- Api: https://tams.tensor.art/