morriszms's picture
Upload folder using huggingface_hub
f1f6710 verified
metadata
library_name: transformers
tags:
  - medical
  - gemma2
  - TensorBlock
  - GGUF
license: apache-2.0
datasets:
  - lavita/ChatDoctor-HealthCareMagic-100k
language:
  - en
pipeline_tag: question-answering
base_model: kingabzpro/Gemma-2-9b-it-chat-doctor
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

kingabzpro/Gemma-2-9b-it-chat-doctor - GGUF

This repo contains GGUF format model files for kingabzpro/Gemma-2-9b-it-chat-doctor.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
Gemma-2-9b-it-chat-doctor-Q2_K.gguf Q2_K 3.805 GB smallest, significant quality loss - not recommended for most purposes
Gemma-2-9b-it-chat-doctor-Q3_K_S.gguf Q3_K_S 4.338 GB very small, high quality loss
Gemma-2-9b-it-chat-doctor-Q3_K_M.gguf Q3_K_M 4.762 GB very small, high quality loss
Gemma-2-9b-it-chat-doctor-Q3_K_L.gguf Q3_K_L 5.132 GB small, substantial quality loss
Gemma-2-9b-it-chat-doctor-Q4_0.gguf Q4_0 5.443 GB legacy; small, very high quality loss - prefer using Q3_K_M
Gemma-2-9b-it-chat-doctor-Q4_K_S.gguf Q4_K_S 5.479 GB small, greater quality loss
Gemma-2-9b-it-chat-doctor-Q4_K_M.gguf Q4_K_M 5.761 GB medium, balanced quality - recommended
Gemma-2-9b-it-chat-doctor-Q5_0.gguf Q5_0 6.484 GB legacy; medium, balanced quality - prefer using Q4_K_M
Gemma-2-9b-it-chat-doctor-Q5_K_S.gguf Q5_K_S 6.484 GB large, low quality loss - recommended
Gemma-2-9b-it-chat-doctor-Q5_K_M.gguf Q5_K_M 6.647 GB large, very low quality loss - recommended
Gemma-2-9b-it-chat-doctor-Q6_K.gguf Q6_K 7.589 GB very large, extremely low quality loss
Gemma-2-9b-it-chat-doctor-Q8_0.gguf Q8_0 9.827 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Gemma-2-9b-it-chat-doctor-GGUF --include "Gemma-2-9b-it-chat-doctor-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Gemma-2-9b-it-chat-doctor-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'