morriszms's picture
Upload folder using huggingface_hub
1147680 verified
metadata
license: apache-2.0
library_name: transformers
tags:
  - TensorBlock
  - GGUF
base_model: recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
model-index:
  - name: Gemma-2-Ataraxy-Gemmasutra-9B-slerp
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 76.49
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 42.25
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 1.74
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 10.74
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.39
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 35.63
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp - GGUF

This repo contains GGUF format model files for recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<bos><start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model

Model file specification

Filename Quant type File Size Description
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q2_K.gguf Q2_K 3.805 GB smallest, significant quality loss - not recommended for most purposes
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_S.gguf Q3_K_S 4.338 GB very small, high quality loss
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_M.gguf Q3_K_M 4.762 GB very small, high quality loss
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q3_K_L.gguf Q3_K_L 5.132 GB small, substantial quality loss
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_0.gguf Q4_0 5.443 GB legacy; small, very high quality loss - prefer using Q3_K_M
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_K_S.gguf Q4_K_S 5.479 GB small, greater quality loss
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q4_K_M.gguf Q4_K_M 5.761 GB medium, balanced quality - recommended
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_0.gguf Q5_0 6.484 GB legacy; medium, balanced quality - prefer using Q4_K_M
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_K_S.gguf Q5_K_S 6.484 GB large, low quality loss - recommended
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q5_K_M.gguf Q5_K_M 6.647 GB large, very low quality loss - recommended
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q6_K.gguf Q6_K 7.589 GB very large, extremely low quality loss
Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q8_0.gguf Q8_0 9.827 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF --include "Gemma-2-Ataraxy-Gemmasutra-9B-slerp-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Gemma-2-Ataraxy-Gemmasutra-9B-slerp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'