morriszms's picture
Upload folder using huggingface_hub
93edb95 verified
metadata
base_model: TheDrummer/Gemmasutra-9B-v1
library_name: transformers
tags:
  - mergekit
  - merge
  - TensorBlock
  - GGUF
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

TheDrummer/Gemmasutra-9B-v1 - GGUF

This repo contains GGUF format model files for TheDrummer/Gemmasutra-9B-v1.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<bos><start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model

Model file specification

Filename Quant type File Size Description
Gemmasutra-9B-v1-Q2_K.gguf Q2_K 3.544 GB smallest, significant quality loss - not recommended for most purposes
Gemmasutra-9B-v1-Q3_K_S.gguf Q3_K_S 4.040 GB very small, high quality loss
Gemmasutra-9B-v1-Q3_K_M.gguf Q3_K_M 4.435 GB very small, high quality loss
Gemmasutra-9B-v1-Q3_K_L.gguf Q3_K_L 4.780 GB small, substantial quality loss
Gemmasutra-9B-v1-Q4_0.gguf Q4_0 5.069 GB legacy; small, very high quality loss - prefer using Q3_K_M
Gemmasutra-9B-v1-Q4_K_S.gguf Q4_K_S 5.103 GB small, greater quality loss
Gemmasutra-9B-v1-Q4_K_M.gguf Q4_K_M 5.365 GB medium, balanced quality - recommended
Gemmasutra-9B-v1-Q5_0.gguf Q5_0 6.038 GB legacy; medium, balanced quality - prefer using Q4_K_M
Gemmasutra-9B-v1-Q5_K_S.gguf Q5_K_S 6.038 GB large, low quality loss - recommended
Gemmasutra-9B-v1-Q5_K_M.gguf Q5_K_M 6.191 GB large, very low quality loss - recommended
Gemmasutra-9B-v1-Q6_K.gguf Q6_K 7.068 GB very large, extremely low quality loss
Gemmasutra-9B-v1-Q8_0.gguf Q8_0 9.152 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Gemmasutra-9B-v1-GGUF --include "Gemmasutra-9B-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Gemmasutra-9B-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'