metadata
license: cc-by-nc-sa-4.0
language:
- ko
- en
tags:
- moe
- TensorBlock
- GGUF
base_model: DopeorNope/Ko-Mixtral-MoE-7Bx2
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
DopeorNope/Ko-Mixtral-MoE-7Bx2 - GGUF
This repo contains GGUF format model files for DopeorNope/Ko-Mixtral-MoE-7Bx2.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Ko-Mixtral-MoE-7Bx2-Q2_K.gguf | Q2_K | 4.434 GB | smallest, significant quality loss - not recommended for most purposes |
Ko-Mixtral-MoE-7Bx2-Q3_K_S.gguf | Q3_K_S | 5.204 GB | very small, high quality loss |
Ko-Mixtral-MoE-7Bx2-Q3_K_M.gguf | Q3_K_M | 5.780 GB | very small, high quality loss |
Ko-Mixtral-MoE-7Bx2-Q3_K_L.gguf | Q3_K_L | 6.268 GB | small, substantial quality loss |
Ko-Mixtral-MoE-7Bx2-Q4_0.gguf | Q4_0 | 6.781 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Ko-Mixtral-MoE-7Bx2-Q4_K_S.gguf | Q4_K_S | 6.837 GB | small, greater quality loss |
Ko-Mixtral-MoE-7Bx2-Q4_K_M.gguf | Q4_K_M | 7.248 GB | medium, balanced quality - recommended |
Ko-Mixtral-MoE-7Bx2-Q5_0.gguf | Q5_0 | 8.265 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Ko-Mixtral-MoE-7Bx2-Q5_K_S.gguf | Q5_K_S | 8.265 GB | large, low quality loss - recommended |
Ko-Mixtral-MoE-7Bx2-Q5_K_M.gguf | Q5_K_M | 8.506 GB | large, very low quality loss - recommended |
Ko-Mixtral-MoE-7Bx2-Q6_K.gguf | Q6_K | 9.842 GB | very large, extremely low quality loss |
Ko-Mixtral-MoE-7Bx2-Q8_0.gguf | Q8_0 | 12.746 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Ko-Mixtral-MoE-7Bx2-GGUF --include "Ko-Mixtral-MoE-7Bx2-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Ko-Mixtral-MoE-7Bx2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'