metadata
license: other
base_model: ConvexAI/Luminex-34B-v0.1
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE
tags:
- TensorBlock
- GGUF
model-index:
- name: Luminex-34B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.63
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.59
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.55
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.68
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.43
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.48
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 72.01
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 64.81
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 54.49
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 91.91
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 81.31
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 82.27
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 69.84
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 70.81
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 67.44
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=ConvexAI/Luminex-34B-v0.1
name: Open Portuguese LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
ConvexAI/Luminex-34B-v0.1 - GGUF
This repo contains GGUF format model files for ConvexAI/Luminex-34B-v0.1.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
[INST] <<SYS>>
{system_prompt}
<</SYS>>
{prompt} [/INST]
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Luminex-34B-v0.1-Q2_K.gguf | Q2_K | 11.944 GB | smallest, significant quality loss - not recommended for most purposes |
Luminex-34B-v0.1-Q3_K_S.gguf | Q3_K_S | 13.933 GB | very small, high quality loss |
Luminex-34B-v0.1-Q3_K_M.gguf | Q3_K_M | 15.511 GB | very small, high quality loss |
Luminex-34B-v0.1-Q3_K_L.gguf | Q3_K_L | 16.894 GB | small, substantial quality loss |
Luminex-34B-v0.1-Q4_0.gguf | Q4_0 | 18.130 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Luminex-34B-v0.1-Q4_K_S.gguf | Q4_K_S | 18.253 GB | small, greater quality loss |
Luminex-34B-v0.1-Q4_K_M.gguf | Q4_K_M | 19.240 GB | medium, balanced quality - recommended |
Luminex-34B-v0.1-Q5_0.gguf | Q5_0 | 22.080 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Luminex-34B-v0.1-Q5_K_S.gguf | Q5_K_S | 22.080 GB | large, low quality loss - recommended |
Luminex-34B-v0.1-Q5_K_M.gguf | Q5_K_M | 22.651 GB | large, very low quality loss - recommended |
Luminex-34B-v0.1-Q6_K.gguf | Q6_K | 26.276 GB | very large, extremely low quality loss |
Luminex-34B-v0.1-Q8_0.gguf | Q8_0 | 34.033 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Luminex-34B-v0.1-GGUF --include "Luminex-34B-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Luminex-34B-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'