metadata
language:
- en
- code
license: apache-2.0
tags:
- merge
- computer science
- TensorBlock
- GGUF
datasets:
- open-phi/programming_books_llama
- open-phi/textbooks
inference:
parameters:
do_sample: true
temperature: 0.2
top_p: 0.14
top_k: 12
max_new_tokens: 250
repetition_penalty: 1.15
widget:
- text: 'To calculate the factorial of n, we can use the following function:'
base_model: Locutusque/TinyMistral-248M-v2.5
model-index:
- name: TinyMistral-248M-v2.5
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 24.57
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 27.49
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.15
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.72
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.83
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 13.36
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 3.18
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.11
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.07
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.5
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/TinyMistral-248M-v2.5
name: Open LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
Locutusque/TinyMistral-248M-v2.5 - GGUF
This repo contains GGUF format model files for Locutusque/TinyMistral-248M-v2.5.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
TinyMistral-248M-v2.5-Q2_K.gguf | Q2_K | 0.105 GB | smallest, significant quality loss - not recommended for most purposes |
TinyMistral-248M-v2.5-Q3_K_S.gguf | Q3_K_S | 0.120 GB | very small, high quality loss |
TinyMistral-248M-v2.5-Q3_K_M.gguf | Q3_K_M | 0.129 GB | very small, high quality loss |
TinyMistral-248M-v2.5-Q3_K_L.gguf | Q3_K_L | 0.137 GB | small, substantial quality loss |
TinyMistral-248M-v2.5-Q4_0.gguf | Q4_0 | 0.149 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
TinyMistral-248M-v2.5-Q4_K_S.gguf | Q4_K_S | 0.149 GB | small, greater quality loss |
TinyMistral-248M-v2.5-Q4_K_M.gguf | Q4_K_M | 0.156 GB | medium, balanced quality - recommended |
TinyMistral-248M-v2.5-Q5_0.gguf | Q5_0 | 0.176 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
TinyMistral-248M-v2.5-Q5_K_S.gguf | Q5_K_S | 0.176 GB | large, low quality loss - recommended |
TinyMistral-248M-v2.5-Q5_K_M.gguf | Q5_K_M | 0.179 GB | large, very low quality loss - recommended |
TinyMistral-248M-v2.5-Q6_K.gguf | Q6_K | 0.204 GB | very large, extremely low quality loss |
TinyMistral-248M-v2.5-Q8_0.gguf | Q8_0 | 0.264 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/TinyMistral-248M-v2.5-GGUF --include "TinyMistral-248M-v2.5-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/TinyMistral-248M-v2.5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'