|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- text-generation-inference |
|
- TensorBlock |
|
- GGUF |
|
datasets: |
|
- TucanoBR/GigaVerbo |
|
metrics: |
|
- perplexity |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: A floresta da Amazônia é conhecida por sua |
|
example_title: Exemplo |
|
- text: Uma das coisas que Portugal, Angola, Brasil e Moçambique tem em comum é o |
|
example_title: Exemplo |
|
- text: O Carnaval do Rio de Janeiro é |
|
example_title: Exemplo |
|
inference: |
|
parameters: |
|
repetition_penalty: 1.2 |
|
temperature: 0.2 |
|
top_k: 20 |
|
top_p: 0.2 |
|
max_new_tokens: 150 |
|
co2_eq_emissions: |
|
emissions: 960000 |
|
source: CodeCarbon |
|
training_type: pre-training |
|
geographical_location: Germany |
|
hardware_used: NVIDIA A100-SXM4-80GB |
|
base_model: TucanoBR/Tucano-1b1 |
|
model-index: |
|
- name: Tucano-1b1 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: CALAME-PT |
|
type: NOVA-vision-language/calame-pt |
|
split: all |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc |
|
value: 58.24 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt |
|
name: Context-Aware LAnguage Modeling Evaluation for Portuguese |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: LAMBADA-PT |
|
type: TucanoBR/lambada-pt |
|
split: train |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc |
|
value: 34.7 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/datasets/TucanoBR/lambada-pt |
|
name: LAMBADA-PT |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ENEM Challenge (No Images) |
|
type: eduagarcia/enem_challenge |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 21.41 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BLUEX (No Images) |
|
type: eduagarcia-temp/BLUEX_without_images |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 23.37 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: OAB Exams |
|
type: eduagarcia/oab_exams |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 25.97 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 RTE |
|
type: assin2 |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 60.82 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 STS |
|
type: eduagarcia/portuguese_benchmark |
|
split: test |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: pearson |
|
value: 24.63 |
|
name: pearson |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: FaQuAD NLI |
|
type: ruanchaves/faquad-nli |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 43.97 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HateBR Binary |
|
type: ruanchaves/hatebr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 29.0 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: PT Hate Speech Binary |
|
type: hate_speech_portuguese |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 41.19 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: tweetSentBR |
|
type: eduagarcia-temp/tweetsentbr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 32.18 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ARC-Challenge (PT) |
|
type: arc_pt |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 30.43 |
|
name: normalized accuracy |
|
source: |
|
url: https://github.com/nlp-uoregon/mlmm-evaluation |
|
name: Evaluation Framework for Multilingual Large Language Models |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (PT) |
|
type: hellaswag_pt |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 42.84 |
|
name: normalized accuracy |
|
source: |
|
url: https://github.com/nlp-uoregon/mlmm-evaluation |
|
name: Evaluation Framework for Multilingual Large Language Models |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA |
|
type: truthfulqa_pt |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 41.59 |
|
name: bleurt |
|
source: |
|
url: https://github.com/nlp-uoregon/mlmm-evaluation |
|
name: Evaluation Framework for Multilingual Large Language Models |
|
--- |
|
|
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"> |
|
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> |
|
</p> |
|
</div> |
|
</div> |
|
|
|
## TucanoBR/Tucano-1b1 - GGUF |
|
|
|
This repo contains GGUF format model files for [TucanoBR/Tucano-1b1](https://huggingface.co/TucanoBR/Tucano-1b1). |
|
|
|
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). |
|
|
|
<div style="text-align: left; margin: 20px 0;"> |
|
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> |
|
Run them on the TensorBlock client using your local machine ↗ |
|
</a> |
|
</div> |
|
|
|
## Prompt template |
|
|
|
``` |
|
|
|
``` |
|
|
|
## Model file specification |
|
|
|
| Filename | Quant type | File Size | Description | |
|
| -------- | ---------- | --------- | ----------- | |
|
| [Tucano-1b1-Q2_K.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q2_K.gguf) | Q2_K | 0.432 GB | smallest, significant quality loss - not recommended for most purposes | |
|
| [Tucano-1b1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q3_K_S.gguf) | Q3_K_S | 0.499 GB | very small, high quality loss | |
|
| [Tucano-1b1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q3_K_M.gguf) | Q3_K_M | 0.548 GB | very small, high quality loss | |
|
| [Tucano-1b1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss | |
|
| [Tucano-1b1-Q4_0.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q4_0.gguf) | Q4_0 | 0.637 GB | legacy; small, very high quality loss - prefer using Q3_K_M | |
|
| [Tucano-1b1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q4_K_S.gguf) | Q4_K_S | 0.640 GB | small, greater quality loss | |
|
| [Tucano-1b1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q4_K_M.gguf) | Q4_K_M | 0.668 GB | medium, balanced quality - recommended | |
|
| [Tucano-1b1-Q5_0.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q5_0.gguf) | Q5_0 | 0.766 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [Tucano-1b1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q5_K_S.gguf) | Q5_K_S | 0.766 GB | large, low quality loss - recommended | |
|
| [Tucano-1b1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q5_K_M.gguf) | Q5_K_M | 0.782 GB | large, very low quality loss - recommended | |
|
| [Tucano-1b1-Q6_K.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q6_K.gguf) | Q6_K | 0.903 GB | very large, extremely low quality loss | |
|
| [Tucano-1b1-Q8_0.gguf](https://huggingface.co/tensorblock/Tucano-1b1-GGUF/blob/main/Tucano-1b1-Q8_0.gguf) | Q8_0 | 1.170 GB | very large, extremely low quality loss - not recommended | |
|
|
|
|
|
## Downloading instruction |
|
|
|
### Command line |
|
|
|
Firstly, install Huggingface Client |
|
|
|
```shell |
|
pip install -U "huggingface_hub[cli]" |
|
``` |
|
|
|
Then, downoad the individual model file the a local directory |
|
|
|
```shell |
|
huggingface-cli download tensorblock/Tucano-1b1-GGUF --include "Tucano-1b1-Q2_K.gguf" --local-dir MY_LOCAL_DIR |
|
``` |
|
|
|
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: |
|
|
|
```shell |
|
huggingface-cli download tensorblock/Tucano-1b1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' |
|
``` |
|
|