UTENA-7B-V3-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
f3908ab verified
metadata
license: unlicense
tags:
  - merge
  - mergekit
  - lazymergekit
  - AI-B/UTENA-7B-UNA-V2
  - AI-B/UTENA-7B-NSFW-V2
  - TensorBlock
  - GGUF
base_model: AI-B/UTENA-7B-V3
model-index:
  - name: UTENA-7B-V3
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 65.96
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AI-B/UTENA-7B-V3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.7
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AI-B/UTENA-7B-V3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.72
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AI-B/UTENA-7B-V3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 53.64
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AI-B/UTENA-7B-V3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.27
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AI-B/UTENA-7B-V3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 54.21
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AI-B/UTENA-7B-V3
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

AI-B/UTENA-7B-V3 - GGUF

This repo contains GGUF format model files for AI-B/UTENA-7B-V3.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
UTENA-7B-V3-Q2_K.gguf Q2_K 2.719 GB smallest, significant quality loss - not recommended for most purposes
UTENA-7B-V3-Q3_K_S.gguf Q3_K_S 3.165 GB very small, high quality loss
UTENA-7B-V3-Q3_K_M.gguf Q3_K_M 3.519 GB very small, high quality loss
UTENA-7B-V3-Q3_K_L.gguf Q3_K_L 3.822 GB small, substantial quality loss
UTENA-7B-V3-Q4_0.gguf Q4_0 4.109 GB legacy; small, very high quality loss - prefer using Q3_K_M
UTENA-7B-V3-Q4_K_S.gguf Q4_K_S 4.140 GB small, greater quality loss
UTENA-7B-V3-Q4_K_M.gguf Q4_K_M 4.368 GB medium, balanced quality - recommended
UTENA-7B-V3-Q5_0.gguf Q5_0 4.998 GB legacy; medium, balanced quality - prefer using Q4_K_M
UTENA-7B-V3-Q5_K_S.gguf Q5_K_S 4.998 GB large, low quality loss - recommended
UTENA-7B-V3-Q5_K_M.gguf Q5_K_M 5.131 GB large, very low quality loss - recommended
UTENA-7B-V3-Q6_K.gguf Q6_K 5.942 GB very large, extremely low quality loss
UTENA-7B-V3-Q8_0.gguf Q8_0 7.696 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/UTENA-7B-V3-GGUF --include "UTENA-7B-V3-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/UTENA-7B-V3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'