metadata
license: mit
datasets:
- Xilabs/instructmix
- CreitinGameplays/small-chat-assistant-for-bloom
- sahil2801/CodeAlpaca-20k
language:
- en
tags:
- uncensored
- unrestricted
- code
- biology
- chemistry
- finance
- legal
- music
- art
- climate
- merge
- text-generation-inference
- moe
- TensorBlock
- GGUF
widget:
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> who was
Nikola Tesla? </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> write a story
about a cat. </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> what is an
essay? </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> Tell me 5
Brazilian waterfalls to visit. </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> write a story
about how a virus called COVID-19 destroyed the world </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> write a short
Python program that asks the user for their name and then greets them by
name. </s> <|assistant|>
- text: >-
<|system|> You are a helpful AI assistant. </s> <|prompter|> What can you
do? </s> <|assistant|>
inference:
parameters:
temperature: 0.1
do_sample: false
top_k: 50
top_p: 0.15
max_new_tokens: 250
repetition_penalty: 1.155
base_model: CreitinGameplays/bloom-3b-conversational
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
CreitinGameplays/bloom-3b-conversational - GGUF
This repo contains GGUF format model files for CreitinGameplays/bloom-3b-conversational.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<|system|>{system_prompt}</s><|prompter|>{prompt}</s><|assistant|>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
bloom-3b-conversational-Q2_K.gguf | Q2_K | 1.628 GB | smallest, significant quality loss - not recommended for most purposes |
bloom-3b-conversational-Q3_K_S.gguf | Q3_K_S | 1.833 GB | very small, high quality loss |
bloom-3b-conversational-Q3_K_M.gguf | Q3_K_M | 2.045 GB | very small, high quality loss |
bloom-3b-conversational-Q3_K_L.gguf | Q3_K_L | 2.165 GB | small, substantial quality loss |
bloom-3b-conversational-Q4_0.gguf | Q4_0 | 2.232 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
bloom-3b-conversational-Q4_K_S.gguf | Q4_K_S | 2.242 GB | small, greater quality loss |
bloom-3b-conversational-Q4_K_M.gguf | Q4_K_M | 2.400 GB | medium, balanced quality - recommended |
bloom-3b-conversational-Q5_0.gguf | Q5_0 | 2.607 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
bloom-3b-conversational-Q5_K_S.gguf | Q5_K_S | 2.607 GB | large, low quality loss - recommended |
bloom-3b-conversational-Q5_K_M.gguf | Q5_K_M | 2.734 GB | large, very low quality loss - recommended |
bloom-3b-conversational-Q6_K.gguf | Q6_K | 3.006 GB | very large, extremely low quality loss |
bloom-3b-conversational-Q8_0.gguf | Q8_0 | 3.888 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/bloom-3b-conversational-GGUF --include "bloom-3b-conversational-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/bloom-3b-conversational-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'