TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

CarrotAI/ko-gemma-2b-it-sft - GGUF

This repo contains GGUF format model files for CarrotAI/ko-gemma-2b-it-sft.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

<bos><start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model

Model file specification

Filename Quant type File Size Description
ko-gemma-2b-it-sft-Q2_K.gguf Q2_K 1.158 GB smallest, significant quality loss - not recommended for most purposes
ko-gemma-2b-it-sft-Q3_K_S.gguf Q3_K_S 1.288 GB very small, high quality loss
ko-gemma-2b-it-sft-Q3_K_M.gguf Q3_K_M 1.384 GB very small, high quality loss
ko-gemma-2b-it-sft-Q3_K_L.gguf Q3_K_L 1.466 GB small, substantial quality loss
ko-gemma-2b-it-sft-Q4_0.gguf Q4_0 1.551 GB legacy; small, very high quality loss - prefer using Q3_K_M
ko-gemma-2b-it-sft-Q4_K_S.gguf Q4_K_S 1.560 GB small, greater quality loss
ko-gemma-2b-it-sft-Q4_K_M.gguf Q4_K_M 1.630 GB medium, balanced quality - recommended
ko-gemma-2b-it-sft-Q5_0.gguf Q5_0 1.799 GB legacy; medium, balanced quality - prefer using Q4_K_M
ko-gemma-2b-it-sft-Q5_K_S.gguf Q5_K_S 1.799 GB large, low quality loss - recommended
ko-gemma-2b-it-sft-Q5_K_M.gguf Q5_K_M 1.840 GB large, very low quality loss - recommended
ko-gemma-2b-it-sft-Q6_K.gguf Q6_K 2.062 GB very large, extremely low quality loss
ko-gemma-2b-it-sft-Q8_0.gguf Q8_0 2.669 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/ko-gemma-2b-it-sft-GGUF --include "ko-gemma-2b-it-sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/ko-gemma-2b-it-sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
2
GGUF
Model size
2.51B params
Architecture
gemma

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tensorblock/ko-gemma-2b-it-sft-GGUF

Quantized
(1)
this model

Dataset used to train tensorblock/ko-gemma-2b-it-sft-GGUF