morriszms's picture
Upload folder using huggingface_hub
1c023f8 verified
|
raw
history blame
4.61 kB
metadata
library_name: transformers
license: llama3.2
base_model: wassname/llama-3-2-1b-sft
tags:
  - alignment-handbook
  - generated_from_trainer
  - TensorBlock
  - GGUF
datasets:
  - HuggingFaceH4/ultrachat_200k
model-index:
  - name: llama-3-2-1b-sft
    results: []
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

wassname/llama-3-2-1b-sft - GGUF

This repo contains GGUF format model files for wassname/llama-3-2-1b-sft.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
llama-3-2-1b-sft-Q2_K.gguf Q2_K 0.541 GB smallest, significant quality loss - not recommended for most purposes
llama-3-2-1b-sft-Q3_K_S.gguf Q3_K_S 0.598 GB very small, high quality loss
llama-3-2-1b-sft-Q3_K_M.gguf Q3_K_M 0.643 GB very small, high quality loss
llama-3-2-1b-sft-Q3_K_L.gguf Q3_K_L 0.682 GB small, substantial quality loss
llama-3-2-1b-sft-Q4_0.gguf Q4_0 0.718 GB legacy; small, very high quality loss - prefer using Q3_K_M
llama-3-2-1b-sft-Q4_K_S.gguf Q4_K_S 0.722 GB small, greater quality loss
llama-3-2-1b-sft-Q4_K_M.gguf Q4_K_M 0.752 GB medium, balanced quality - recommended
llama-3-2-1b-sft-Q5_0.gguf Q5_0 0.831 GB legacy; medium, balanced quality - prefer using Q4_K_M
llama-3-2-1b-sft-Q5_K_S.gguf Q5_K_S 0.831 GB large, low quality loss - recommended
llama-3-2-1b-sft-Q5_K_M.gguf Q5_K_M 0.849 GB large, very low quality loss - recommended
llama-3-2-1b-sft-Q6_K.gguf Q6_K 0.952 GB very large, extremely low quality loss
llama-3-2-1b-sft-Q8_0.gguf Q8_0 1.230 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/llama-3-2-1b-sft-GGUF --include "llama-3-2-1b-sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/llama-3-2-1b-sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'