TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

sanghyun89/llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2 - GGUF

This repo contains GGUF format model files for sanghyun89/llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q2_K.gguf Q2_K 1.364 GB smallest, significant quality loss - not recommended for most purposes
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q3_K_S.gguf Q3_K_S 1.543 GB very small, high quality loss
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q3_K_M.gguf Q3_K_M 1.687 GB very small, high quality loss
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q3_K_L.gguf Q3_K_L 1.815 GB small, substantial quality loss
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q4_0.gguf Q4_0 1.917 GB legacy; small, very high quality loss - prefer using Q3_K_M
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q4_K_S.gguf Q4_K_S 1.928 GB small, greater quality loss
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q4_K_M.gguf Q4_K_M 2.019 GB medium, balanced quality - recommended
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q5_0.gguf Q5_0 2.270 GB legacy; medium, balanced quality - prefer using Q4_K_M
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q5_K_S.gguf Q5_K_S 2.270 GB large, low quality loss - recommended
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q5_K_M.gguf Q5_K_M 2.322 GB large, very low quality loss - recommended
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q6_K.gguf Q6_K 2.644 GB very large, extremely low quality loss
llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q8_0.gguf Q8_0 3.422 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-GGUF --include "llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
441
GGUF
Model size
3.21B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tensorblock/llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-GGUF

Dataset used to train tensorblock/llama-3.2-3b-plantInsight_lab_v4-langchainPart2_result_ep2-GGUF