morriszms's picture
Upload folder using huggingface_hub
6029e31 verified
metadata
library_name: transformers
language:
  - en
  - ko
pipeline_tag: translation
license: mit
datasets:
  - pre
base_model: 4yo1/llama3-pre1-pre2-ins1-lora3
tags:
  - TensorBlock
  - GGUF
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

4yo1/llama3-pre1-pre2-ins1-lora3 - GGUF

This repo contains GGUF format model files for 4yo1/llama3-pre1-pre2-ins1-lora3.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
llama3-pre1-pre2-ins1-lora3-Q2_K.gguf Q2_K 3.055 GB smallest, significant quality loss - not recommended for most purposes
llama3-pre1-pre2-ins1-lora3-Q3_K_S.gguf Q3_K_S 3.515 GB very small, high quality loss
llama3-pre1-pre2-ins1-lora3-Q3_K_M.gguf Q3_K_M 3.845 GB very small, high quality loss
llama3-pre1-pre2-ins1-lora3-Q3_K_L.gguf Q3_K_L 4.127 GB small, substantial quality loss
llama3-pre1-pre2-ins1-lora3-Q4_0.gguf Q4_0 4.454 GB legacy; small, very high quality loss - prefer using Q3_K_M
llama3-pre1-pre2-ins1-lora3-Q4_K_S.gguf Q4_K_S 4.483 GB small, greater quality loss
llama3-pre1-pre2-ins1-lora3-Q4_K_M.gguf Q4_K_M 4.696 GB medium, balanced quality - recommended
llama3-pre1-pre2-ins1-lora3-Q5_0.gguf Q5_0 5.338 GB legacy; medium, balanced quality - prefer using Q4_K_M
llama3-pre1-pre2-ins1-lora3-Q5_K_S.gguf Q5_K_S 5.338 GB large, low quality loss - recommended
llama3-pre1-pre2-ins1-lora3-Q5_K_M.gguf Q5_K_M 5.462 GB large, very low quality loss - recommended
llama3-pre1-pre2-ins1-lora3-Q6_K.gguf Q6_K 6.277 GB very large, extremely low quality loss
llama3-pre1-pre2-ins1-lora3-Q8_0.gguf Q8_0 8.127 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/llama3-pre1-pre2-ins1-lora3-GGUF --include "llama3-pre1-pre2-ins1-lora3-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/llama3-pre1-pre2-ins1-lora3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'