Edit model card
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

4yo1/llama3-pre1-pre2-inst3-lora3-mergkit-base - GGUF

This repo contains GGUF format model files for 4yo1/llama3-pre1-pre2-inst3-lora3-mergkit-base.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q2_K.gguf Q2_K 2.980 GB smallest, significant quality loss - not recommended for most purposes
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q3_K_S.gguf Q3_K_S 3.428 GB very small, high quality loss
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q3_K_M.gguf Q3_K_M 3.741 GB very small, high quality loss
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q3_K_L.gguf Q3_K_L 4.021 GB small, substantial quality loss
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q4_0.gguf Q4_0 4.340 GB legacy; small, very high quality loss - prefer using Q3_K_M
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q4_K_S.gguf Q4_K_S 4.362 GB small, greater quality loss
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q4_K_M.gguf Q4_K_M 4.566 GB medium, balanced quality - recommended
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q5_0.gguf Q5_0 5.198 GB legacy; medium, balanced quality - prefer using Q4_K_M
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q5_K_S.gguf Q5_K_S 5.198 GB large, low quality loss - recommended
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q5_K_M.gguf Q5_K_M 5.315 GB large, very low quality loss - recommended
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q6_K.gguf Q6_K 6.110 GB very large, extremely low quality loss
llama3-pre1-pre2-inst3-lora3-mergkit-base-Q8_0.gguf Q8_0 7.911 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/llama3-pre1-pre2-inst3-lora3-mergkit-base-GGUF --include "llama3-pre1-pre2-inst3-lora3-mergkit-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/llama3-pre1-pre2-inst3-lora3-mergkit-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
0
GGUF
Model size
7.99B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tensorblock/llama3-pre1-pre2-inst3-lora3-mergkit-base-GGUF

Quantized
(1)
this model