notus-7b-v1-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
ac5ea0d verified
metadata
datasets:
  - argilla/ultrafeedback-binarized-preferences
language:
  - en
base_model: argilla/notus-7b-v1
library_name: transformers
pipeline_tag: text-generation
tags:
  - dpo
  - rlaif
  - preference
  - ultrafeedback
  - TensorBlock
  - GGUF
license: mit
model-index:
  - name: notus-7b-v1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 0.6459044368600683
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
          name: Open LLM Leaderboard Results
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 0.8478390758812986
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
          name: Open LLM Leaderboard Results
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 0.5436768358952805
        source:
          url: >-
            https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
          name: Open LLM Leaderboard Results
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0.6303308230938872
            name: accuracy
        source:
          url: >-
            https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
          name: Open LLM Leaderboard Results
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0.1516300227445034
            name: accuracy
        source:
          url: >-
            https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
          name: Open LLM Leaderboard Results
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0.7940015785319653
            name: accuracy
        source:
          url: >-
            https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json
          name: Open LLM Leaderboard Results
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AlpacaEval
          type: tatsu-lab/alpaca_eval
        metrics:
          - type: tatsu-lab/alpaca_eval
            value: 0.9142
            name: win rate
        source:
          url: https://tatsu-lab.github.io/alpaca_eval/
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MT-Bench
          type: unknown
        metrics:
          - type: unknown
            value: 7.3
            name: score
        source:
          url: https://huggingface.co/spaces/lmsys/mt-bench
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

argilla/notus-7b-v1 - GGUF

This repo contains GGUF format model files for argilla/notus-7b-v1.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|system|>
{system_prompt}</s>
<|user|>
{prompt}</s>
<|assistant|>

Model file specification

Filename Quant type File Size Description
notus-7b-v1-Q2_K.gguf Q2_K 2.532 GB smallest, significant quality loss - not recommended for most purposes
notus-7b-v1-Q3_K_S.gguf Q3_K_S 2.947 GB very small, high quality loss
notus-7b-v1-Q3_K_M.gguf Q3_K_M 3.277 GB very small, high quality loss
notus-7b-v1-Q3_K_L.gguf Q3_K_L 3.560 GB small, substantial quality loss
notus-7b-v1-Q4_0.gguf Q4_0 3.827 GB legacy; small, very high quality loss - prefer using Q3_K_M
notus-7b-v1-Q4_K_S.gguf Q4_K_S 3.856 GB small, greater quality loss
notus-7b-v1-Q4_K_M.gguf Q4_K_M 4.068 GB medium, balanced quality - recommended
notus-7b-v1-Q5_0.gguf Q5_0 4.654 GB legacy; medium, balanced quality - prefer using Q4_K_M
notus-7b-v1-Q5_K_S.gguf Q5_K_S 4.654 GB large, low quality loss - recommended
notus-7b-v1-Q5_K_M.gguf Q5_K_M 4.779 GB large, very low quality loss - recommended
notus-7b-v1-Q6_K.gguf Q6_K 5.534 GB very large, extremely low quality loss
notus-7b-v1-Q8_0.gguf Q8_0 7.167 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/notus-7b-v1-GGUF --include "notus-7b-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/notus-7b-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'