GGUF
TensorBlock
GGUF
morriszms's picture
Update README.md
40978c6 verified
metadata
license: cc-by-nc-4.0
datasets:
  - pankajmathur/orca_mini_v1_dataset
  - openai/summarize_from_feedback
  - PygmalionAI/PIPPA
  - chargoddard/rpguild
  - lemonilia/LimaRP
  - PKU-Alignment/PKU-SafeRLHF
  - Intel/orca_dpo_pairs
  - allenai/ultrafeedback_binarized_cleaned
base_model: chargoddard/servile-harpsichord-cdpo
tags:
  - TensorBlock
  - GGUF
TensorBlock

Website Twitter Discord GitHub Telegram

chargoddard/servile-harpsichord-cdpo - GGUF

This repo contains GGUF format model files for chargoddard/servile-harpsichord-cdpo.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Our projects

Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
πŸš€ Try it now! πŸš€
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
servile-harpsichord-cdpo-Q2_K.gguf Q2_K 2.719 GB smallest, significant quality loss - not recommended for most purposes
servile-harpsichord-cdpo-Q3_K_S.gguf Q3_K_S 3.165 GB very small, high quality loss
servile-harpsichord-cdpo-Q3_K_M.gguf Q3_K_M 3.519 GB very small, high quality loss
servile-harpsichord-cdpo-Q3_K_L.gguf Q3_K_L 3.822 GB small, substantial quality loss
servile-harpsichord-cdpo-Q4_0.gguf Q4_0 4.109 GB legacy; small, very high quality loss - prefer using Q3_K_M
servile-harpsichord-cdpo-Q4_K_S.gguf Q4_K_S 4.140 GB small, greater quality loss
servile-harpsichord-cdpo-Q4_K_M.gguf Q4_K_M 4.368 GB medium, balanced quality - recommended
servile-harpsichord-cdpo-Q5_0.gguf Q5_0 4.998 GB legacy; medium, balanced quality - prefer using Q4_K_M
servile-harpsichord-cdpo-Q5_K_S.gguf Q5_K_S 4.998 GB large, low quality loss - recommended
servile-harpsichord-cdpo-Q5_K_M.gguf Q5_K_M 5.131 GB large, very low quality loss - recommended
servile-harpsichord-cdpo-Q6_K.gguf Q6_K 5.942 GB very large, extremely low quality loss
servile-harpsichord-cdpo-Q8_0.gguf Q8_0 7.696 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/servile-harpsichord-cdpo-GGUF --include "servile-harpsichord-cdpo-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/servile-harpsichord-cdpo-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'