Text Generation
GGUF
English
TensorBlock
GGUF
Inference Endpoints
conversational
morriszms's picture
Upload folder using huggingface_hub
c9d55a5 verified
metadata
language:
  - en
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
datasets:
  - nlpai-lab/databricks-dolly-15k-ko
  - kyujinpy/KOR-OpenOrca-Platypus-v3
tags:
  - TensorBlock
  - GGUF
base_model: ifuseok/yi-ko-playtus-instruct-v0.2
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

ifuseok/yi-ko-playtus-instruct-v0.2 - GGUF

This repo contains GGUF format model files for ifuseok/yi-ko-playtus-instruct-v0.2.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|system|>
{system_prompt}<|endoftext|>
<|user|>
{prompt}<|endoftext|>
<|assistant|>

Model file specification

Filename Quant type File Size Description
yi-ko-playtus-instruct-v0.2-Q2_K.gguf Q2_K 2.240 GB smallest, significant quality loss - not recommended for most purposes
yi-ko-playtus-instruct-v0.2-Q3_K_S.gguf Q3_K_S 2.592 GB very small, high quality loss
yi-ko-playtus-instruct-v0.2-Q3_K_M.gguf Q3_K_M 2.857 GB very small, high quality loss
yi-ko-playtus-instruct-v0.2-Q3_K_L.gguf Q3_K_L 3.084 GB small, substantial quality loss
yi-ko-playtus-instruct-v0.2-Q4_0.gguf Q4_0 3.317 GB legacy; small, very high quality loss - prefer using Q3_K_M
yi-ko-playtus-instruct-v0.2-Q4_K_S.gguf Q4_K_S 3.339 GB small, greater quality loss
yi-ko-playtus-instruct-v0.2-Q4_K_M.gguf Q4_K_M 3.498 GB medium, balanced quality - recommended
yi-ko-playtus-instruct-v0.2-Q5_0.gguf Q5_0 3.999 GB legacy; medium, balanced quality - prefer using Q4_K_M
yi-ko-playtus-instruct-v0.2-Q5_K_S.gguf Q5_K_S 3.999 GB large, low quality loss - recommended
yi-ko-playtus-instruct-v0.2-Q5_K_M.gguf Q5_K_M 4.092 GB large, very low quality loss - recommended
yi-ko-playtus-instruct-v0.2-Q6_K.gguf Q6_K 4.724 GB very large, extremely low quality loss
yi-ko-playtus-instruct-v0.2-Q8_0.gguf Q8_0 6.117 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/yi-ko-playtus-instruct-v0.2-GGUF --include "yi-ko-playtus-instruct-v0.2-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/yi-ko-playtus-instruct-v0.2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'