Nero-7B-slerp / README.md
teodortita's picture
Update README.md
a68b9dc verified
|
raw
history blame
2.43 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - mistralai/Mistral-7B-Instruct-v0.2
  - teknium/OpenHermes-2.5-Mistral-7B
base_model:
  - mistralai/Mistral-7B-Instruct-v0.2
  - teknium/OpenHermes-2.5-Mistral-7B

Nero-7B-slerp

alt text

Nero-7B-slerp is a merge of the following models using LazyMergekit:

πŸ“ˆ Performance

| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
| --- | --- | --- | --- | --- | --- | --- | --- |
| teodortita/Nero-7B-slerp | 41.73 | 73.37 | 58.66 | 43.03 | 54.2 |
| mistralai/Mistral-7B-Instruct-v0.2 | 38.68 | 71.64 | 66.85 | 42.28 | 54.86 |
| teknium/OpenHermes-2.5-Mistral-7B | 42.82 | 73.04 | 53.02 | 40.99 | 52.47 |

Observe the metrics in bold to see the benchmarks where this merged model overtakes the base models in performance.

🧩 Configuration

slices:
  - sources:
      - model: mistralai/Mistral-7B-Instruct-v0.2
        layer_range: [0, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "teodortita/Nero-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])