|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- mistralai/Mistral-7B-Instruct-v0.2 |
|
- teknium/OpenHermes-2.5-Mistral-7B |
|
base_model: |
|
- mistralai/Mistral-7B-Instruct-v0.2 |
|
- teknium/OpenHermes-2.5-Mistral-7B |
|
license: apache-2.0 |
|
--- |
|
|
|
# Nero-7B-slerp |
|
|
|
<p align="center"> |
|
<img src="https://i.postimg.cc/28Pc5XT1/output-1.jpg" alt="alt text" class="center" width="300"/> |
|
</p> |
|
|
|
Nero-7B-slerp is a merge of the following models using mergekit: |
|
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) |
|
* [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) |
|
|
|
## π Performance |
|
| Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average | |
|
| --- | --- | --- | --- | --- | --- | |
|
| [teodortita/Nero-7B-slerp](#) | 41.73 | **73.37** | 58.66 | **43.03** | 54.2 | |
|
| [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 38.68 | 71.64 | 66.85 | 42.28 | 54.86 | |
|
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) | 42.82 | 73.04 | 53.02 | 40.99 | 52.47 | |
|
|
|
Observe the metrics in bold to see the benchmarks where this merged model overtakes the base models in performance. |
|
|
|
## 𧩠Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: mistralai/Mistral-7B-Instruct-v0.2 |
|
layer_range: [0, 32] |
|
- model: teknium/OpenHermes-2.5-Mistral-7B |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## π» Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "teodortita/Nero-7B-slerp" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |