|
|
|
--- |
|
language: |
|
- en |
|
- ms |
|
- zh |
|
tags: |
|
- sentiment-analysis |
|
- text-classification |
|
- multilingual |
|
license: apache-2.0 |
|
datasets: |
|
- tyqiangz/multilingual-sentiments |
|
- scfengv/TVL_Sentiment_Analysis |
|
- argilla/twitter-coronavirus |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-sentiment-multilingual-finetuned |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
metrics: |
|
- type: accuracy |
|
value: 0.8444 |
|
--- |
|
# xlm-roberta-base-sentiment-multilingual-finetuned |
|
|
|
## Model description |
|
|
|
This is a fine-tuned version of the [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) model, trained on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) dataset. It's designed for multilingual sentiment analysis in English, Malay, and Chinese. |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended for sentiment analysis tasks in English, Malay, and Chinese. It can classify text into three sentiment categories: positive, negative, and neutral. |
|
|
|
## Training and evaluation data |
|
|
|
The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments)[TVL_Sentiment_Analysis](https://huggingface.co/datasets/scfengv/TVL_Sentiment_Analysis) , [argilla/twitter-coronavirus](https://huggingface.co/datasets/argilla/twitter-coronavirus) datasets, which includes data in English, Malay, and Chinese. |
|
|
|
## Training procedure |
|
|
|
The model was fine-tuned using the Hugging Face Transformers library. |
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
num_train_epochs=2, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=64, |
|
warmup_steps=500, |
|
weight_decay=0.01, |
|
logging_dir='./logs', |
|
logging_steps=10, |
|
evaluation_strategy="steps", |
|
save_strategy="steps", |
|
load_best_model_at_end=True, |
|
) |
|
|
|
## Evaluation results |
|
|
|
Test results: {'eval_loss': 0.5881872177124023, 'eval_accuracy': 0.8443683409436834, 'eval_f1': 0.8438625655671501, 'eval_precision': 0.8438352235376211, 'eval_recall': 0.8443683409436834} |
|
|
|
## Environmental impact |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
|