Text Classification
Transformers
Safetensors
xlm-roberta
toxic
dardem's picture
Update README.md
0ef8890 verified
metadata
library_name: transformers
language:
  - en
  - fr
  - it
  - es
  - ru
  - uk
  - tt
  - ar
  - hi
  - ja
  - zh
  - he
  - am
  - de
license: openrail++
datasets:
  - textdetox/multilingual_toxicity_dataset
metrics:
  - f1
base_model:
  - cis-lmu/glot500-base
pipeline_tag: text-classification
tags:
  - toxic

Multilingual Toxicity Classifier for 15 Languages (2025)

This is an instance of Glot500 that was fine-tuned on binary toxicity classification task based on our updated (2025) dataset textdetox/multilingual_toxicity_dataset.

Now, the models covers 15 languages from various language families:

Language Code F1 Score
English en 0.9071
Russian ru 0.9022
Ukrainian uk 0.9075
German de 0.6528
Spanish es 0.7430
Arabic ar 0.6207
Amharic am 0.6676
Hindi hi 0.7171
Chinese zh 0.6483
Italian it 0.5975
French fr 0.9125
Hinglish hin 0.7051
Hebrew he 0.8911
Japanese ja 0.9058
Tatar tt 0.5834

How to use

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained('textdetox/glot500-toxicity-classifier')
model = AutoModelForSequenceClassification.from_pretrained('textdetox/glot500-toxicity-classifier')

batch = tokenizer.encode("You are amazing!", return_tensors="pt")

output = model(batch)
# idx 0 for neutral, idx 1 for toxic

Citation

The model is prepared for TextDetox 2025 Shared Task evaluation.

Citation TBD soon.