Text Classification
Transformers
Safetensors
xlm-roberta
Inference Endpoints
dardem's picture
Update README.md
926ad04 verified
---
library_name: transformers
language:
- en
- fr
- it
- es
- ru
- uk
- tt
- ar
- hi
- ja
- zh
- he
- am
- de
license: openrail++
datasets:
- textdetox/multilingual_toxicity_dataset
metrics:
- f1
base_model:
- FacebookAI/xlm-roberta-large
pipeline_tag: text-classification
---
## Multilingual Toxicity Classifier for 15 Languages (2025)
This is an instance of [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) that was fine-tuned on binary toxicity classification task based on our updated (2025) dataset [textdetox/multilingual_toxicity_dataset](https://huggingface.co/datasets/textdetox/multilingual_toxicity_dataset).
Now, the models covers 15 languages from various language families:
| Language | Code | F1 Score |
|-----------|------|---------|
| English | en | 0.9225 |
| Russian | ru | 0.9525 |
| Ukrainian | uk | 0.96 |
| German | de | 0.7325 |
| Spanish | es | 0.7125 |
| Arabic | ar | 0.6625 |
| Amharic | am | 0.5575 |
| Hindi | hi | 0.9725 |
| Chinese | zh | 0.9175 |
| Italian | it | 0.5864 |
| French | fr | 0.9235 |
| Hinglish | hin | 0.61 |
| Hebrew | he | 0.8775 |
| Japanese | ja | 0.8773 |
| Tatar | tt | 0.5744 |
## How to use
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained('textdetox/xlmr-large-toxicity-classifier-v2')
model = AutoModelForSequenceClassification.from_pretrained('textdetox/xlmr-large-toxicity-classifier-v2')
batch = tokenizer.encode("You are amazing!", return_tensors="pt")
output = model(batch)
# idx 0 for neutral, idx 1 for toxic
```
## Citation
The model is prepared for [TextDetox 2025 Shared Task](https://pan.webis.de/clef25/pan25-web/text-detoxification.html) evaluation.
Citation TBD soon.