metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: wav2vec-turkish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_16_1
type: common_voice_16_1
config: tr
split: test
args: tr
metrics:
- name: Wer
type: wer
value: 0.27954553626002226
wav2vec-turkish
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3312
- Wer: 0.2795
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.433 | 0.29 | 400 | 1.1787 | 0.9025 |
0.7193 | 0.58 | 800 | 0.6239 | 0.6505 |
0.5243 | 0.88 | 1200 | 0.5098 | 0.5901 |
0.4514 | 1.17 | 1600 | 0.4618 | 0.5131 |
0.419 | 1.46 | 2000 | 0.4341 | 0.4990 |
0.3975 | 1.75 | 2400 | 0.4016 | 0.4809 |
0.3756 | 2.05 | 2800 | 0.3926 | 0.4684 |
0.3421 | 2.34 | 3200 | 0.3841 | 0.4639 |
0.3418 | 2.63 | 3600 | 0.3889 | 0.4551 |
0.3409 | 2.92 | 4000 | 0.3615 | 0.4295 |
0.3039 | 3.21 | 4400 | 0.3939 | 0.4562 |
0.2934 | 3.51 | 4800 | 0.3866 | 0.4531 |
0.2971 | 3.8 | 5200 | 0.3891 | 0.4497 |
0.2953 | 4.09 | 5600 | 0.3694 | 0.4405 |
0.2836 | 4.38 | 6000 | 0.3583 | 0.4252 |
0.2721 | 4.67 | 6400 | 0.3562 | 0.4164 |
0.2685 | 4.97 | 6800 | 0.3574 | 0.4215 |
0.251 | 5.26 | 7200 | 0.3660 | 0.4239 |
0.2537 | 5.55 | 7600 | 0.3723 | 0.4308 |
0.2629 | 5.84 | 8000 | 0.3758 | 0.4359 |
0.2469 | 6.14 | 8400 | 0.3799 | 0.4295 |
0.2342 | 6.43 | 8800 | 0.3453 | 0.3947 |
0.2306 | 6.72 | 9200 | 0.3361 | 0.3977 |
0.2284 | 7.01 | 9600 | 0.3592 | 0.3970 |
0.213 | 7.3 | 10000 | 0.3451 | 0.3904 |
0.2188 | 7.6 | 10400 | 0.3426 | 0.3828 |
0.2239 | 7.89 | 10800 | 0.3392 | 0.3878 |
0.205 | 8.18 | 11200 | 0.3729 | 0.4021 |
0.2049 | 8.47 | 11600 | 0.3511 | 0.3981 |
0.2082 | 8.77 | 12000 | 0.3719 | 0.4143 |
0.2047 | 9.06 | 12400 | 0.3569 | 0.3984 |
0.1895 | 9.35 | 12800 | 0.3416 | 0.3798 |
0.1935 | 9.64 | 13200 | 0.3378 | 0.3793 |
0.1963 | 9.93 | 13600 | 0.3301 | 0.3883 |
0.1889 | 10.23 | 14000 | 0.3577 | 0.3881 |
0.182 | 10.52 | 14400 | 0.3281 | 0.3776 |
0.1794 | 10.81 | 14800 | 0.3368 | 0.3780 |
0.1736 | 11.1 | 15200 | 0.3275 | 0.3664 |
0.1659 | 11.4 | 15600 | 0.3504 | 0.3753 |
0.1651 | 11.69 | 16000 | 0.3343 | 0.3733 |
0.1735 | 11.98 | 16400 | 0.3510 | 0.3750 |
0.1569 | 12.27 | 16800 | 0.3243 | 0.3558 |
0.1535 | 12.56 | 17200 | 0.3239 | 0.3603 |
0.1588 | 12.86 | 17600 | 0.3372 | 0.3655 |
0.1524 | 13.15 | 18000 | 0.3453 | 0.3709 |
0.1453 | 13.44 | 18400 | 0.3301 | 0.3590 |
0.1483 | 13.73 | 18800 | 0.3443 | 0.3597 |
0.1432 | 14.02 | 19200 | 0.3401 | 0.3584 |
0.1374 | 14.32 | 19600 | 0.3357 | 0.3618 |
0.1399 | 14.61 | 20000 | 0.3386 | 0.3621 |
0.142 | 14.9 | 20400 | 0.3136 | 0.3547 |
0.1307 | 15.19 | 20800 | 0.3328 | 0.3501 |
0.1299 | 15.49 | 21200 | 0.3346 | 0.3458 |
0.1301 | 15.78 | 21600 | 0.3188 | 0.3473 |
0.1285 | 16.07 | 22000 | 0.3323 | 0.3522 |
0.1197 | 16.36 | 22400 | 0.3333 | 0.3392 |
0.1225 | 16.65 | 22800 | 0.3545 | 0.3590 |
0.1263 | 16.95 | 23200 | 0.3360 | 0.3410 |
0.1134 | 17.24 | 23600 | 0.3204 | 0.3332 |
0.114 | 17.53 | 24000 | 0.3264 | 0.3349 |
0.1165 | 17.82 | 24400 | 0.3160 | 0.3323 |
0.1134 | 18.12 | 24800 | 0.3479 | 0.3377 |
0.1066 | 18.41 | 25200 | 0.3306 | 0.3378 |
0.1027 | 18.7 | 25600 | 0.3286 | 0.3286 |
0.1083 | 18.99 | 26000 | 0.3285 | 0.3227 |
0.0937 | 19.28 | 26400 | 0.3240 | 0.3259 |
0.1007 | 19.58 | 26800 | 0.3286 | 0.3283 |
0.0996 | 19.87 | 27200 | 0.3278 | 0.3277 |
0.0972 | 20.16 | 27600 | 0.3171 | 0.3212 |
0.0927 | 20.45 | 28000 | 0.3426 | 0.3283 |
0.0932 | 20.75 | 28400 | 0.3418 | 0.3215 |
0.0932 | 21.04 | 28800 | 0.3246 | 0.3192 |
0.086 | 21.33 | 29200 | 0.3385 | 0.3201 |
0.0868 | 21.62 | 29600 | 0.3441 | 0.3164 |
0.0875 | 21.91 | 30000 | 0.3246 | 0.3161 |
0.0815 | 22.21 | 30400 | 0.3303 | 0.3105 |
0.0832 | 22.5 | 30800 | 0.3288 | 0.3062 |
0.0781 | 22.79 | 31200 | 0.3411 | 0.3098 |
0.077 | 23.08 | 31600 | 0.3343 | 0.3146 |
0.0755 | 23.37 | 32000 | 0.3211 | 0.3093 |
0.0742 | 23.67 | 32400 | 0.3268 | 0.3044 |
0.0721 | 23.96 | 32800 | 0.3222 | 0.3045 |
0.0699 | 24.25 | 33200 | 0.3266 | 0.2993 |
0.0663 | 24.54 | 33600 | 0.3410 | 0.3008 |
0.0719 | 24.84 | 34000 | 0.3221 | 0.3014 |
0.0682 | 25.13 | 34400 | 0.3290 | 0.2976 |
0.0674 | 25.42 | 34800 | 0.3356 | 0.2967 |
0.0661 | 25.71 | 35200 | 0.3181 | 0.2964 |
0.0681 | 26.0 | 35600 | 0.3318 | 0.2964 |
0.0619 | 26.3 | 36000 | 0.3220 | 0.2945 |
0.0617 | 26.59 | 36400 | 0.3270 | 0.2913 |
0.0592 | 26.88 | 36800 | 0.3391 | 0.2909 |
0.0569 | 27.17 | 37200 | 0.3394 | 0.2900 |
0.0557 | 27.47 | 37600 | 0.3359 | 0.2877 |
0.0555 | 27.76 | 38000 | 0.3306 | 0.2847 |
0.055 | 28.05 | 38400 | 0.3344 | 0.2827 |
0.0516 | 28.34 | 38800 | 0.3389 | 0.2845 |
0.0544 | 28.63 | 39200 | 0.3360 | 0.2840 |
0.0542 | 28.93 | 39600 | 0.3366 | 0.2828 |
0.0524 | 29.22 | 40000 | 0.3343 | 0.2819 |
0.0527 | 29.51 | 40400 | 0.3319 | 0.2803 |
0.0503 | 29.8 | 40800 | 0.3312 | 0.2795 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2