Wav2Vec2-XLS-TR

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Common Voice 17 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
23.6246 0.3446 500 16.2983
8.2656 0.6892 1000 5.9544
5.1083 1.0338 1500 4.6067
4.1663 1.3784 2000 3.8176
3.559 1.7229 2500 3.4058
3.2582 2.0675 3000 3.2021
2.9475 2.4121 3500 3.0052
1.9117 2.7567 4000 2.7124
1.2089 3.1013 4500 2.6678
0.9505 3.4459 5000 3.1079
0.7688 3.7905 5500 2.6448
0.6474 4.1351 6000 2.1442
0.5717 4.4797 6500 2.6866
0.5262 4.8243 7000 2.7227
0.4764 5.1688 7500 2.5182
0.4452 5.5134 8000 2.7089
0.4237 5.8580 8500 2.4970
0.4004 6.2026 9000 2.0918
0.3845 6.5472 9500 2.1695
0.3685 6.8918 10000 2.3281
0.3582 7.2364 10500 2.0681
0.337 7.5810 11000 2.2537
0.3301 7.9256 11500 2.0853
0.3142 8.2702 12000 2.2379
0.3087 8.6147 12500 2.0322
0.3026 8.9593 13000 2.3212
0.2894 9.3039 13500 2.3748
0.2828 9.6485 14000 2.0785
0.2798 9.9931 14500 1.9353
0.262 10.3377 15000 2.2790
0.2592 10.6823 15500 2.4833
0.2613 11.0269 16000 2.4773
0.2484 11.3715 16500 2.0992
0.246 11.7161 17000 2.3585
0.2423 12.0606 17500 2.3101
0.2341 12.4052 18000 2.2959
0.231 12.7498 18500 1.9466
0.2283 13.0944 19000 2.0529
0.224 13.4390 19500 2.2572
0.226 13.7836 20000 2.2684
0.2157 14.1282 20500 2.0767
0.2128 14.4728 21000 2.4035
0.2117 14.8174 21500 2.1512
0.2062 15.1620 22000 2.2322
0.2002 15.5065 22500 2.1550
0.2033 15.8511 23000 2.5139
0.1997 16.1957 23500 2.1999
0.1942 16.5403 24000 2.5342
0.1942 16.8849 24500 2.5350
0.1923 17.2295 25000 2.6199
0.1869 17.5741 25500 2.5196
0.1875 17.9187 26000 2.3316
0.1825 18.2633 26500 2.4622
0.1828 18.6079 27000 2.3920
0.1808 18.9524 27500 2.4571
0.1797 19.2970 28000 2.5495
0.1777 19.6416 28500 2.1355
0.1752 19.9862 29000 2.4399
0.1723 20.3308 29500 2.4222
0.1719 20.6754 30000 2.7283
0.1702 21.0200 30500 2.4584
0.1655 21.3646 31000 2.4646
0.1658 21.7092 31500 2.3659
0.1676 22.0538 32000 2.5923
0.1606 22.3983 32500 2.6588
0.1572 22.7429 33000 2.3206
0.1611 23.0875 33500 2.4420
0.156 23.4321 34000 2.6875
0.1587 23.7767 34500 2.6309
0.1596 24.1213 35000 2.4329
0.1572 24.4659 35500 2.6451
0.1552 24.8105 36000 2.6626
0.1529 25.1551 36500 2.6210
0.155 25.4997 37000 2.6027
0.1531 25.8442 37500 2.7159
0.1564 26.1888 38000 2.6926
0.1497 26.5334 38500 2.8263
0.1443 26.8780 39000 2.6340
0.15 27.2226 39500 2.6501
0.1456 27.5672 40000 2.7202
0.1489 27.9118 40500 2.6929
0.15 28.2564 41000 2.7965
0.147 28.6010 41500 2.6591
0.1471 28.9456 42000 2.7030
0.1473 29.2901 42500 2.6906
0.1458 29.6347 43000 2.7225
0.1438 29.9793 43500 2.7124

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tgrhn/wav2vec2-turkish-3

Finetuned
(524)
this model