tgrhn's picture
Update README.md
9cd2d65 verified
metadata
language:
  - tr
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17
metrics:
  - wer
model-index:
  - name: 'Whisper Large v2 TR '
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_17
          config: tr
          split: None
          args: tr
        metrics:
          - name: Wer
            type: wer
            value: 9.018929438770417

Whisper Large v2 TR

This model is a fine-tuned version of openai/whisper-large-v2 on the Common Voice 17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1568
  • Wer: 9.0189

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1437 0.9997 1450 0.1550 9.9787
0.0766 2.0 2901 0.1470 9.3616
0.0371 2.9990 4350 0.1568 9.0189

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.17.1
  • Tokenizers 0.19.1