|
# ASR project barebones |
|
|
|
## Installation guide |
|
|
|
1. `pip install -r ./requirements.txt` |
|
2. Download from http://www.openslr.org/11/ `3-gram.arpa.gz` and `librispeech-vocab.txt` |
|
3. `python hw_asr/text_encoder/fix_vocab.py` and `python hw_asr/text_encoder/lower_model.py` to prepare vocab and model for using |
|
4. If you want to test my model, download it from the https://drive.google.com/file/d/1QrSsx56V5YNjGHUBWy6CIRVbNbjKWUpJ/view?usp=share_link , name it `checkpoint.pth` and place to the directory `default_test_model/` |
|
|
|
## Train |
|
|
|
1. `python train.py --config hw_asr/configs/config2.json` |
|
|
|
## Test |
|
|
|
1. `python test.py -c default_test_config.json -r default_test_model/checkpoint.pth` |
|
|
|
## Wandb report |
|
|
|
1. You can check my wandb report (only on Russian) and wandb project from the https://wandb.ai/tgritsaev/asr_project/reports/DLA-HW-1--Vmlldzo1NzY3NjA5?accessToken=kotkj5oyzomf2d2g1f40mczdnpirwvuw1f538zx9k491g1cfh3wg9iwhsb65o054 |
|
|
|
|