vit-weld-classify
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7966
- Accuracy: 0.6895
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8686 | 0.8130 | 100 | 0.7966 | 0.6895 |
0.6935 | 1.6260 | 200 | 1.2217 | 0.5068 |
0.4225 | 2.4390 | 300 | 0.9592 | 0.6210 |
0.2586 | 3.2520 | 400 | 1.3123 | 0.5936 |
0.237 | 4.0650 | 500 | 0.8075 | 0.6986 |
0.2658 | 4.8780 | 600 | 1.0878 | 0.6210 |
0.1904 | 5.6911 | 700 | 1.1048 | 0.7169 |
0.0964 | 6.5041 | 800 | 1.3602 | 0.6849 |
0.0474 | 7.3171 | 900 | 1.1331 | 0.7671 |
0.1179 | 8.1301 | 1000 | 1.1228 | 0.7306 |
0.0447 | 8.9431 | 1100 | 1.2609 | 0.7397 |
0.0043 | 9.7561 | 1200 | 1.1746 | 0.7763 |
0.1059 | 10.5691 | 1300 | 1.1867 | 0.7763 |
0.0026 | 11.3821 | 1400 | 1.2890 | 0.7534 |
0.0039 | 12.1951 | 1500 | 1.3283 | 0.7580 |
0.002 | 13.0081 | 1600 | 1.1871 | 0.7671 |
0.0019 | 13.8211 | 1700 | 1.1643 | 0.7900 |
0.0264 | 14.6341 | 1800 | 1.1537 | 0.7900 |
0.0015 | 15.4472 | 1900 | 1.1821 | 0.7945 |
0.0015 | 16.2602 | 2000 | 1.1962 | 0.7900 |
0.0014 | 17.0732 | 2100 | 1.2036 | 0.7900 |
0.0014 | 17.8862 | 2200 | 1.2067 | 0.7900 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 193
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for th041/vit-weld-classify
Base model
google/vit-base-patch16-224-in21k